РОССИЙСКАЯ ФЕДЕРАЦИЯ

(19)(11) 2 722 788⁽¹³⁾ C2

(51) M_ПK C07K 16/30 (2006.01) A61K 39/395 (2006.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(52) CIIK

C07K 16/30 (2020.02); A61K 39/395 (2020.02); A61K 39/39558 (2020.02); C07K 16/2809 (2020.02); C07K 16/283 (2020.02); C07K 16/2875 (2020.02); C07K 16/2878 (2020.02); C07K 16/468 (2020.02); A61K 2039/505 (2020.02)

(21)(22) Заявка: 2016143383, 07.04.2015

(24) Дата начала отсчета срока действия патента: 07.04.2015

Дата регистрации: 03.06.2020

Приоритет(ы):

2

C

 ∞

 ∞

2

2

(30) Конвенционный приоритет: 07.04.2014 JP 2014-078457; 26.12.2014 JP 2014-264589

- (43) Дата публикации заявки: 07.05.2018 Бюл. № 13
- (45) Опубликовано: 03.06.2020 Бюл. № 16
- (85) Дата начала рассмотрения заявки РСТ на национальной фазе: 07.11.2016
- (86) Заявка РСТ: JP 2015/060794 (07.04.2015)
- (87) Публикация заявки РСТ: WO 2015/156268 (15.10.2015)

Адрес для переписки:

105082, Москва, Спартаковский пер., 2, стр. 1, секция 1. этаж 3. ЕВРОМАРКПАТ

(72) Автор(ы):

ИГАВА Томоюки (ЈР), МИЯЗАКИ Таро (ЈР). ТАНИГУЧИ Кендзи (ЈР), ХИРОНИВА Наока (ЈР)

(73) Патентообладатель(и): ЧУГАИ СЕЙЯКУ КАБУСИКИ КАЙСЯ (JP)

(56) Список документов, цитированных в отчете о поиске: WO 2013070468 A1, 16.05.2013. US 20120076727 A1, 29.03.2012. WO 2009126920 A2, 15.10.2009. US 20110059076 A1, 10.03.2011. US 20090274649 A1, 05.11.2009. US 8080250 B1, 20.12.2011. RU 2337107 C2, 27.10.2008. WO 2008051424 A2, 02.05.2008. WO 2010037395 A2, 08.04.2010.

(54) ИММУНОАКТИВИРУЮЩАЯ АНТИГЕНСВЯЗЫВАЮЩАЯ МОЛЕКУЛА

(57) Реферат:

Изобретение относится биотехнологии. Описано антитело для лечения рака, содержащее: (1) специфический для рака антигенсвязывающий Fab домен; (2) CD137-связывающий Fab домен и (3) FcRn-связывающий домен, в котором FcRnсвязывающий домен представляет собой Fcобласть антитела с пониженной активностью связывания с Гсу-рецептором. Также описана фармацевтическая композиция, содержащая указанное антитело. Изобретение предназначено для рака. Изобретение приводит к активации иммунных клеток и тем самым приводит к противоопухолевой активности при отсутствии побочных действий, таких как гепатотоксичность. 5 н. и 10 з.п. ф-лы, 19 ил., 9 табл., 11 пр.

Стр.: 1

N

 ∞ ∞

N

(19) **RII** (11)

2 722 788⁽¹³⁾ **C2**

(51) Int. Cl. *C07K 16/30* (2006.01) *A61K 39/395* (2006.01)

FEDERAL SERVICE FOR INTELLECTUAL PROPERTY

(12) ABSTRACT OF INVENTION

(52) CPC

C07K 16/30 (2020.02); A61K 39/395 (2020.02); A61K 39/39558 (2020.02); C07K 16/2809 (2020.02); C07K 16/283 (2020.02); C07K 16/2875 (2020.02); C07K 16/2878 (2020.02); C07K 16/468 (2020.02); A61K 2039/505 (2020.02)

(21)(22) Application: 2016143383, 07.04.2015

(24) Effective date for property rights:

07.04.2015

Registration date: 03.06.2020

Priority:

2

C

 ∞

 ∞

2

(30) Convention priority:

07.04.2014 JP 2014-078457; 26.12.2014 JP 2014-264589

- (43) Application published: **07.05.2018** Bull. № **13**
- (45) Date of publication: 03.06.2020 Bull. № 16
- (85) Commencement of national phase: 07.11.2016

(86) PCT application:

JP 2015/060794 (07.04.2015)

(87) PCT publication:

WO 2015/156268 (15.10.2015)

Mail address:

105082, Moskva, Spartakovskij per., 2, str. 1, sektsiya 1, etazh 3, EVROMARKPAT

(72) Inventor(s):

IGAVA Tomoyuki (JP), MIYAZAKI Taro (JP), TANIGUCHI Kendzi (JP), KHIRONIVA Naoka (JP)

(73) Proprietor(s):

CHUGAI SEIYAKU KABUSHIKI KAISHA (JP)

Z

N

 ∞

(54) IMMUNOACTIVATING ANTIGEN-BINDING MOLECULE

(57) Abstract:

FIELD: biotechnology.

SUBSTANCE: described is an antibody for treating cancer, comprising: (1) Fab-specific antigen-binding Fab domain; (2) CD137-binding Fab domain and (3) FcRn-binding domain, wherein the FcRn-binding domain is an Fc region of the antibody with reduced binding activity with the Fcγ-receptor. What is also

described is a pharmaceutical composition containing said antibody. Invention is intended for cancer.

EFFECT: invention leads to activation of immune cells and thereby leads to anti-tumor activity with no side effects such as hepatotoxicity.

15 cl, 19 dwg, 9 tbl, 11 ex

Стр.: 2

Область техники, к которой относится изобретение

Настоящее изобретение относится к новому способу лечения рака, в котором применяют биспецифическое антитело.

Предпосылки создания изобретения

5

Рак является одной из основных причин смертности в мире. За исключением некоторых карцином, рак часто является неоперабельным в момент его обнаружения, и исход лечения, которое основано на применении химиотерапевтических агентов, что представляет собой основной терапевтический метод, не обязательно является благоприятным. Гетерогенность раковых клеток сама по себе является не единственным фактором, который затрудняет лечение рака, и предполагается, что основную роль играет микроокружение опухоли (незапатентованный документ 1). В последние годы было выдвинуто предположение о том, что нерезектабельную злокачественную меланому можно излечивать с помощью антитела к СТLА-4, которое ослабляет супрессорные Т-клетки (незапатентованный документ 2). Это позволяет предположить, что иммуностимуляция опухоли может служить основой для разработки новых стратегий лечения рака.

Известно, что Т-клетки, которые играют важные роли в опухолевом иммунитете, активируются двумя сигналами: 1) связыванием Т-клеточного рецептора (TCR) с антигенным пептидом, который презентуется молекулами главного комплекса гистосовместимости (ГКГС), и активацией ТСR; и 2) связыванием костимуляторной молекулы на поверхности Т-клеток с лигандами на антигенпрезентирующих клетках и активацией костимулятора. Кроме того, описано, что для Т-клеточной активации является важной активация молекул, принадлежащих к суперсемейству фактора некроза опухоли (TNF) и суперсемейству TNF-рецептора, таких как CD137(4-1BB), на поверхности Т-клеток (незапатентованный документ 3).

В суперсемейство TNF и суперсемейство TNF-рецептора входят такие молекулы, как CD137, CD137L, CD40, CD40L, OX40, OX40L, CD27, CD70, HVEM, LIGHT, RANK, RANKL, CD30, CD153, GITR и GITRL. Описано, что CD137 экспрессируется не только на поверхности Т-клеток, но также на поверхности других иммунных клеток, таких как дендритные клетки (ДК), В-клетки, NK-клетки и нейтрофилы (незапатентованный документ 4).

Уже известно, что агонистические антитела к CD137 обладают противоопухолевыми действиями, и это, как продемонстрировано экспериментальным путем, главным образом является следствием активации CD8-позитивных Т-клеток и NK-клеток (незапатентованный документ 5). Однако побочные действия, связанные с неспецифической гепатотоксичностью агонистических антител к CD137, оказались клинической и неклинической проблемой, и вследствие этого разработка фармацевтических агентов не расширялась (незапатентованные документы 6 и 7). Предполагается, что основная причина побочных действий обусловлена связыванием с Fсү-рецептором через константную область антитела (незапатентованный документ 8). Кроме того, для агонистических антител, мишенью которых являются рецепторы, принадлежащие к суперсемейству TNF, установлено, что для проявления их агонистической активности in vivo необходимо, чтобы антитело перекрестно связывалось через экспрессирующие Fсү-рецептор клетки (экспрессирующие FcүRII клетки) (незапатентованный документ 9). Более конкретно, медицинские действия

более конкретно, медицинские деиствия
агонистических антител к CD137, представляющие собой противоопухолевые действия,
и побочные действия, включающие гепатотоксичность, оба включают связывание
антител с Fcγ-рецепторами. Таким образом, если связывание антител с Fcγ-рецепторами

повышают, то, как ожидается, улучшаются медицинские действия, но при этом также должны возрастать гепатотоксические побочные действия, а, если связывание антител с Гсү-рецепторами понижают, то побочные действия должны уменьшаться, но при этом медицинские действия также могут снижаться, и до настоящего времени не описаны агонистические антитела к CD137, у которых медицинские действия отделены от побочных действий. Кроме того, противоопухолевые действия самих агонистических антител к CD137 в целом не являются сильными, и поэтому желательно избегать токсичности и одновременно дополнительно повышать их медицинское действие.

Биспецифические антитела отличаются наличием по меньшей мере двух связывающих доменов, и их молекулярная морфология уже хорошо известна специалистам в данной области. Среди прочего, сконструированы молекулы, в которых один из двух связывающих доменов специфически связывается с раковым поверхностным антигеном, а второй связывающий домен связывается с антигеном Т-клеточной поверхности СD3 (незапатентованный документ 10). Установлено, что такие биспецифические одноцепочечные антитела проявляют противоопухолевое действие путем активации Т-клеток с помощью зависимого от ракового антигена пути.

Глипикан 3 (GPC3) представляет собой белок, который принадлежит к семейству глипиканов, т.е. группе гепарансульфатпротеогликанов, связанных с клеточной поверхностью через гликозилфосфатидилинозитол (незапатентованный документ 11). Глипиканы играют важную роль в пролиферации, дифференцировке и миграции клеток. GPC3 экспрессируется в 70% или большем количестве тканей гепатом, полученных с помощью хирургического иссечения или бипсии, и редко экспрессируется или вообще не экспрессируется в соседних ненеопластических повреждениях печени и в большинстве тканей взрослых (незапатентованные документы 12 и 13). Кроме того, установлено, что пациенты с высоким уровнем экспрессии GPC3 в ткани гепатом имеют плохой прогноз (незапатентованный документ 14), и GPC3 рассматривается в качестве

Документы, характеризующие известный уровень техники Незапатентованные документы:

перспективной молекулы-мишени для гепатомы.

30 [незапатентованный документ 1] Hanahan, Cell, 144, 2011, сс. 646-674; [незапатентованный документ 2] Prieto, Clin Cancer Res. 18, 2012, сс. 2039-2047; [незапатентованный документ 3] Summers, Nat. Rev. Immunol., 12, 2012, сс. 339-351; [незапатентованный документ 4] Vinay, Cell Biol Int., 33, 2009, сс. 453-465; [незапатентованный документ 5] Houot, Blood, 114, 2009, сс. 3431-3438; [незапатентованный документ 6] Ascierto, Semin Oncol., 37, 2010, сс. 508-516;

[незапатентованный документ 6] Ascierto, Semin Oncol., 37, 2010, сс. 508-516; [незапатентованный документ 7] Dubrot, Cancer Immunol. Immunother., 59, 2010, сс. 1223-1233;

[незапатентованный документ 8] Schabowsky, Vaccine, 28, 2009, сс. 512-522; [незапатентованный документ 9] Li, Proc Natl Acad Sci USA. 110(48), 2013, сс. 19501-19506:

[незапатентованный документ 10] Brandl, Cancer Immunol. Immunother., 56, 2007, сс. 1551-1563:

[незапатентованный документ 11] Filmus, J. Clin. Invest., 108, 2001, сс. 497-501; [незапатентованный документ 12] Zhu-Zu-W, Gut, 48, 2001, сс. 558-564;

45 [незапатентованный документ 13] Yamauchi, Mod. Pathol., 18, 2005, сс. 1591-1598; [незапатентованный документ 14] Yorita, Liver Int., 1, 2010, сс. 120-131. Краткое изложение сущности изобретения

Техническая задача, положенная в основу настоящего изобретения

Настоящее изобретение было создано с учетом вышеуказанных обстоятельств. В основу настоящего изобретения была положена задача разработать антигенсвязывающие молекулы, которые обладают агонистической активностью в отношении представителей суперсемейства TNF или суперсемейства TNF-рецептора, которые не обладают токсичностью, активируя при этом иммунные клетки, и обладают очень высоким противоопухолевым действием. Другой задачей настоящего изобретения является создание фармацевтических композиций, содержащих антигенсвязывающую молекулу в качестве действующего вещества, или способов лечения рака с помощью фармацевтической композиции.

Средства решения указанных задач

При создании настоящего изобретения установлено, что даже, несмотря на то, что антигенсвязывающие молекулы, имеющие только один домен, связывающийся с представителем суперсемейства TNF, или только один домен, связывающийся с представителем суперсемейства TNF-рецептора, не обладают способностью активировать иммунные клетки, антигенсвязывающие молекулы, которые имеют домен, связывающийся со специфическим для рака антигеном, и домен, связывающийся с представителем суперсемейства TNF, или домен, связывающийся со специфическим для рака антигеном, и домен, связывающийся с представителем суперсемейства TNFрецептора, активируют иммунные клетки посредством агонистической активности в отношении факторов, принадлежащих к суперсемейству TNF или суперсемейству TNFрецептора, только в присутствии клеток, экспрессирующих специфический для рака антиген, и не обладают побочными действиями, такими как гепатотоксичность, сохраняя при этом противоопухолевую активность. Кроме того, при создании настоящего изобретения установлено, что путем применения антигенсвязывающих молекул в сочетании с антигенсвязывающими молекулами, которые имеет домен, связывающийся со специфическим для рака антигеном, и домен, связывающийся с комплексом Тклеточного рецептора, можно избегать побочных действий и повышать противоопухолевую активность, и тем самым решать задачу, положенную в основу настоящего изобретения.

50 Более конкретно, в настоящем изобретении предложены:

- [1] антигенсвязывающая молекула, содержащая:
- (1) домен, связывающийся со специфическим для рака антигеном; и
- (2) домен, связывающийся с представителем суперсемейства фактора некроза опухоли (TNF), или домен, связывающийся с представителем суперсемейства рецептора фактора некроза опухоли (TNF);
- [2] антигенсвязывающая молекула по п. [1], дополнительно содержащая FcRn-связывающий домен;
- [3] антигенсвязывающая молекула по п. [2], в которой FcRn-связывающий домен представляет собой Fc-область антитела с пониженной активностью связывания с Fcγ-рецептором;
- [4] антигенсвязывающая молекула по одному из п.п. [1]-[3], в которой домен, связывающийся с представителем суперсемейства TNF, или домен, связывающийся с представителем суперсемейства TNF-рецептора, представляет собой CD137-связывающий домен;
- (5) антигенсвязывающая молекула по одному из п.п. [1]-[4], которая представляет собой биспецифическое антитело;
 - [6] фармацевтическая композиция, содержащая в качестве действующего вещества антигенсвязывающую молекулу по одному из п.п. [1]-[5];

- [7] фармацевтическая композиция по п. [6], которая представляет собой индуцирующую цитотоксичность композицию;
- [8] фармацевтическая композиция по п. [6], которая представляет собой композицию, предназначенную для применения для лечения рака;
- [9] фармацевтическая композиция, содержащая комбинацию первой антигенсвязывающей молекулы по одному из п.п. [1]-[5] и второй антигенсвязывающей молекулы, которая содержит:
 - (1) домен, связывающийся со специфическим для рака антигеном; и
 - (2) домен, связывающийся с комплексом Т-клеточного рецептора;

5

10

- [10] фармацевтическая композиция по п. [9], в которой вторая антигенсвязывающая молекула представляет собой антигенсвязывающую молекулу, которая дополнительно содержит FcRn-связывающий домен;
- [11] фармацевтическая композиция по п. [10], в которой FcRn-связывающий домен представляет собой Fc-область антитела с пониженной активностью связывания с Fcγ-рецептором;
- [12] фармацевтическая композиция по одному из п.п. [9]-[11], в которой домен, связывающийся с комплексом Т-клеточного рецептора, представляет собой домен, связывающийся с Т-клеточным рецептором;
- [13] фармацевтическая композиция по одному из п.п. [9]-[11], в которой домен, связывающийся с комплексом Т-клеточного рецептора, представляет собой CD3-связывающий домен;
 - [14] фармацевтическая композиция по одному из п.п. [9]-[13], в которой вторая антигенсвязывающая молекула представляет собой биспецифическое антитело;
- [15] фармацевтическая композиция по одному из п.п. [9]-[14], в которой первая антигенсвязывающая молекула и вторая антигенсвязывающая молекула смешаны;
- [16] фармацевтическая композиция по одному из п.п. [9]-[14], в которой первую антигенсвязывающую молекулу и вторую антигенсвязывающую молекулу применяют совместно;
- [17] фармацевтическая композиция по одному из п.п. [9]-[14], в которой первую антигенсвязывающую молекулу и вторую антигенсвязывающую молекулу применяют одновременно;
 - [18] фармацевтическая композиция по одному из п.п. [9]-[14], в которой первую антигенсвязывающую молекулу и вторую антигенсвязывающую молекулу применяют раздельно;
- 35 [19] фармацевтическая композиция по одному из п.п. [9]-[18], которая представляет собой индуцирующую цитотоксичность композицию;
 - [20] фармацевтическая композиция по одному из п.п. [9]-[18], которая представляет собой композицию, предназначенную для применения для лечения рака;
 - [21] фармацевтическая композиция, содержащая в качестве действующего вещества первую антигенсвязывающую молекулу, которая содержит:
 - (1) домен, связывающийся со специфическим для рака антигеном; и
 - (2) домен, связывающийся с представителем суперсемейства фактора некроза опухоли (TNF), или домен, связывающийся с представителем суперсемейства рецептора фактора некроза опухоли (TNF),
- 45 предназначенная для совместного применения со второй антигенсвязывающей молекулой, которая содержит:
 - (1) домен, связывающийся со специфическим для рака антигеном; и
 - (2) домен, связывающийся с комплексом Т-клеточного рецептора;

- [22] фармацевтическая композиция по п. [21], которая представляет собой индуцирующую цитотоксичность композицию;
- [23] фармацевтическая композиция по п. [21], которая представляет собой композицию, предназначенную для применения для лечения рака;

5

35

- [24] фармацевтическая композиция по одному из п.п. [21]-[23], в которой первая антигенсвязывающая молекула и/или вторая антигенсвязывающая молекула представляет собой антигенсвязывающую молекулу, которая дополнительно содержит FcRn-связывающий домен;
- [25] фармацевтическая композиция по п. [24], в которой FcRn-связывающий домен представляет собой Fc-область антитела с пониженной активностью связывания с Fcγ-рецептором;
 - [26] фармацевтическая композиция по одному из п.п. [21]-[25], в которой домен, связывающийся с представителем суперсемейства TNF, или домен, связывающийся с представителем суперсемейства рецептора TNF, представляет собой CD137-связывающий домен или CD40-связывающий домен;
 - [27] фармацевтическая композиция по одному из п.п. [21]-[26], в которой домен, связывающийся с комплексом Т-клеточного рецептора, представляет собой домен, связывающийся с Т-клеточным рецептором;
- [28] фармацевтическая композиция по одному из п.п. [21]-[26], в которой домен, связывающийся с комплексом Т-клеточного рецептора, представляет собой CD3-связывающий домен;
 - [29] фармацевтическая композиция по одному из п.п. [21]-[28], в которой первая антигенсвязывающая молекула и/или вторая антигенсвязывающая молекула представляет собой биспецифическое антитело;
- 25 [30] фармацевтическая композиция по одному из п.п. [21]-[29], которую применяют одновременно со второй антигенсвязывающей молекулой;
 - [31] фармацевтическая композиция по одному из п.п. [21]-[29], которую применяют отдельно от второй антигенсвязывающей молекулы;
 - [32] фармацевтическая композиция, содержащая в качестве действующего вещества вторую антигенсвязывающую молекулу, которая содержит:
 - (1) домен, связывающийся со специфическим раковым антигеном; и
 - (2) домен, связывающийся с комплексом Т-клеточного рецептора,
 - предназначенная для совместного применения с первой антигенсвязывающей молекулой, которая содержит:
 - (1) домен, связывающийся со специфическим для рака антигеном; и
 - (2) домен, связывающийся с представителем суперсемейства фактора некроза опухоли (TNF), или домен, связывающийся с представителем суперсемейства рецептора фактора некроза опухоли (TNF);
 - [33] фармацевтическая композиция по п. [32], которая представляет собой индуцирующую цитотоксичность композицию;
 - [34] фармацевтическая композиция по п. [32], которая представляет собой композицию, предназначенную для применения для лечения рака;
 - [35] фармацевтическая композиция по одному из п.п. [32]-[34], в которой первая антигенсвязывающая молекула и/или вторая антигенсвязывающая молекула
- 45 представляет собой антигенсвязывающую молекулу, которая дополнительно содержит FcRn-связывающий домен;
 - [36] фармацевтическая композиция по п. [35], в которой FcRn-связывающий домен представляет собой Fc-область антитела с пониженной активностью связывания с Fcy-

рецептором;

5

- [37] фармацевтическая композиция по одному из п.п. [32]-[36], в которой домен, связывающийся с комплексом Т-клеточного рецептора, представляет собой домен, связывающийся с Т-клеточным рецептором;
- [38] фармацевтическая композиция по одному из п.п. [32]-[36], в которой домен, связывающийся с комплексом Т-клеточного рецептора, представляет собой CD3-связывающий домен;
- [39] фармацевтическая композиция по одному из п.п. [32]-[38], в которой домен, связывающийся с представителем суперсемейства TNF, или домен, связывающийся с представителем суперсемейства TNF-рецептора, представляет собой CD137-связывающий домен или CD40-связывающий домен;
- [40] фармацевтическая композиция по одному из п.п. [32]-[39], в которой первая антигенсвязывающая молекула и/или вторая антигенсвязывающая молекула представляет собой биспецифическое антитело;
- [41] фармацевтическая композиция по одному из п.п. [32]-[40], которую применяют одновременно с первой антигенсвязывающей молекулой;
 - [42] фармацевтическая композиция по одному из п.п. [32]-[40], которую применяют отдельно от первой антигенсвязывающей молекулы;
- [43] способ индукции цитотоксичности, подавления клеточной пролиферации, активирования иммунитета против раковой клетки или содержащей раковую клетку опухолевой ткани, или лечения или предупреждения рака, который включает стадию, на которых применяют антигенсвязывающую молекулу по одному из п.п. [1]-[5] или фармацевтическую композицию по одному из п.п. [6]-[42];
- [44] антигенсвязывающая молекула по одному из п.п. [1]-[5] или фармацевтическая композиция по одному из п.п. [6]-[42], предназначенная для применения для индукции цитотоксичности, подавления клеточной пролиферации, активирования иммунитета против раковой клетки или содержащей раковую клетку опухолевой ткани, или лечения или предупреждения рака;
- [45] применение антигенсвязывающей молекулы по одному из п.п. [1]-[5] для приготовления фармацевтической композиции по одному из п.п. [6]-[42]; и
 - [46] способ приготовления фармацевтической композиции по одному из п.п. [6]-[42], который включает стадию, на которой применяют антигенсвязывающую молекулу по одному из п.п. [1]-[5].
- Кроме того, настоящее изобретение относится к способам лечения или предупреждения рака, заключающимся в том, что вводят антигенсвязывающую молекулу, предлагаемую в настоящем изобретении, или фармацевтическую композицию, предлагаемую в настоящем изобретении, пациенту, который нуждается в лечении. Настоящее изобретение относится также к набору, предназначенному для применения в способе, предлагаемом в настоящем изобретении, который содержит
- антигенсвязывающую молекулу, предлагаемую в настоящем изобретении. Настоящее изобретение относится также к применению антигенсвязывающей молекулы, предлагаемой в настоящем изобретении, для получения фармацевтической композиции, предназначенной для индукции цитотоксичности (например, фармацевтической композиции, предназначенной для лечения или предупреждения рака). Кроме того,
- настоящее изобретение относится к антигенсвязывающим молекулам, предлагаемым в настоящем изобретении, или фармацевтическим композициям, предлагаемым в настоящем изобретении, предназначенным для применения в способах, предлагаемых в настоящем изобретении.

Краткое описание чертежей

На чертежах показано:

- на фиг 1 график, иллюстрирующий результаты оценки воздействия антител к мышиному CD137 на активацию Т-клеток, полученные с помощью IFN-γ-ELISA. Ctrl mIgG1 обозначает применяемое в качестве отрицательного контроля мышиное антитело IgG1-изотипа;
 - на фиг. 2 диаграмма, на которой продемонстрирована концепция активирующего воздействия на Т-клетки антитела к мышиному CD137 в различных молекулярных формах;
- на фиг. 3 диаграмма, на которой продемонстрирована концепция зависящего от антигена GPC3 активирующего воздействия на Т-клетки биспецифического антитела к человеческому GPC3/к мышиному CD137;
 - на фиг. 4 график, иллюстрирующий результат оценки зависящего от антигена GPC3 активирующего воздействия на Т-клетки биспецифического антитела к человеческому GPC3/к мышиному CD137, полученные с помощью IFN-γ-ELISA;
 - на фиг. 5 график, иллюстрирующий результат оценки влияния изменений в константных областях биспецифического антитела к человеческому GPC3/к мышиному CD137 на зависящее от антигена GPC3 активирующее воздействие на Т-клетки, полученный с помощью IFN-γ-ELISA;
- 20 на фиг. 6 график, иллюстрирующий результат оценки повышающего Т-клеточную активацию воздействия, полученного в результате применения смеси биспецифического антитела к человеческому GPC3/к мышиному CD137 и биспецифического антитела к человеческому GPC3/к мышиному CD3, полученный с помощью IFN-γ-ELISA. Ctrl hIgG1 обозначает применяемое в качестве отрицательного контроля человеческое антитело 25 IgG1-изотипа (фирма Alexis Corporation);
 - на фиг. 7 график, иллюстрирующий противоопухолевое действие биспецифического антитела к человеческому GPC3/к мышиному CD137 на созданной на мышах с помощью сингенной трансплантации модели опухоли линии CT26. Стрелками обозначено время введения антител;
- зо на фиг. 8 график, иллюстрирующий влияние биспецифического антитела к человеческому GPC3/к мышиному CD137 и антитела к мышиному CD137 на аспартатаминотрансферазу (AST) в крови при оценке на созданной на мышах с помощью сингенной трансплантации модели опухоли линии CT26;
 - на фиг. 9 график, иллюстрирующий влияние биспецифического антитела к человеческому GPC3/к мышиному CD137 и антитела к мышиному CD137 на аланинаминотрансферазу (ALT) в крови при оценке на созданной на мышах с помощью сингенной трансплантации модели опухоли линии CT26;
 - на фиг. 10 график, иллюстрирующий влияние биспецифического антитела к человеческому GPC3/к мышиному CD137 и антитела к мышиному CD137 на общий билирубин в крови при оценке на созданной на мышах с помощью сингенной трансплантации модели опухоли линии CT26;
 - на фиг. 11 фотографии, полученные при проведении гистопатологических исследований печени на созданной на мышах с помощью сингенной трансплантации модели опухоли линии СТ26 после обработки биспецифическим антителом к человеческому GPC3/к мышиному CD137 и антителом к мышиному CD137. На фотографиях представлены окрашенные гематоксилином-эозином изображения срезов печени репрезентативной мыши, при этом на фотографиях а) и г) представлены результаты, полученные после введения растворителя, на фотографиях б) и д)

представлены результаты, полученные после введения 1D8-MB492, и на фотографиях в) и е) представлены результаты, полученные после введения GPC3 ERY22-3-1D8. Наконечниками стрелок обозначены расщепленные или некротизированные клетки, а * обозначены области воспаления;

на фиг. 12 - график, демонстрирующий противоопухолевое действие совместного применения биспецифического антитела к человеческому GPC3/к мышиному CD137 и биспецифического антитела к человеческому GPC3/к мышиному CD3 на созданной на мышах с помощью сингенной трансплантации модели опухоли линии LLC. Стрелками обозначено время введения антител;

на фиг. 13 - взаимосвязь между аминокислотными остатками, образующими Fcобласти IgG1, IgG2, IgG3 и IgG4, и EU-нумерацией по Кэботу (в контексте настоящего описания обозначена также как EU-индекс);

на фиг. 14-1 - результаты, полученные с помощью ELISA, оценки связывания антител к человеческому CD137 с фрагментированными слитыми белками человеческий CD137-Fc. На чертеже «нет» обозначает уровень проявления цвета при осуществлении ELISA в лунках, в которых не был иммобилизован антиген (несенсибилизированные лунки);

на фиг. 14-2 - величины (отношения к уровню в несенсибилизированных лунках), полученные путем деления уровней проявления цвета при осуществлении ELISA для каждого образца, представленного на фиг. 14-1, на уровень проявления цвета при осуществлении ELISA в несенсибилизированных лунках (связывание с лунками, в которых не был иммобилизован антиген);

на фиг. 15 - график, иллюстрирующий IFN γ-индуцирующую активность антител к человеческому CD137;

на фиг. 16 - данные об активирующем Т-клетки действии и профиле связывания антител к человеческому CD137;

на фиг. 17 - график, иллюстрирующий результаты оценки повышающего активацию T-клеток действия, полученного в результате применения смеси биспецифического антитела к человеческому GPC3/к мышиному CD40 и биспецифического антитела к человеческому GPC3/к мышиному CD3, полученные с помощью IFN- γ -ELISA. Ctrl hIgG1 обозначает применяемое в качестве отрицательного контроля человеческое антитело IgG1-изотипа;

на фиг. 18 - график, иллюстрирующий результаты оценки повышающего активацию Т-клеток действия, полученного в результате применения биспецифического антитела к человеческому GPC3/к человеческому CD137 GPC3 FAE-BMS, полученные с помощью IFN-γ-ELISA. Ctrl hIgG1 обозначает применяемое в качестве отрицательного контроля человеческое антитело IgG1-изотипа;

на фиг. 19 - график, иллюстрирующий результаты оценки опосредуемой CD137 агонистической активности различных биспецифических антител к человеческому GPC3/к человеческому CD137, по уровню производства IL-6, который активирует В-клетки. Ctrl hIgG1 обозначает применяемое в качестве отрицательного контроля человеческое антитело IgG1-изотипа.

Варианты осуществления изобретения

Представленные ниже определения даны с целью облегчения понимания настоящего изобретения.

45 Антигенсвязывающие молекулы

10

В настоящем изобретении не существует ограничения касательно конкретных «антигенсвязывающих молекул», если в них присутствует «связывающий домен», предлагаемый в настоящем изобретении, и они могут содержать также пептид или

белок, состоящий примерно из пяти или большего количества аминокислот. Пептид и белок не ограничены субстанциями, полученными из живого организма, и они, например, могут представлять собой полипептид, полученный из искусственно созданной последовательности. Они могут представлять собой также любой встречающийся в естественных условиях полипептид, синтетический полипептид, рекомбинантный полипептид и т.п.

Предпочтительным примером антигенсвязывающей молекулы, предлагаемой в настоящем изобретении, является антигенсвязывающая молекула, которая содержит FcRn-связывающий домен, входящий в Fc-область антитела. Метод удлинения времени полужизни в крови белка, введенного в живой организм, метод добавления FcRn-связывающего домена антитела к представляющему интерес белку и использования функции опосредуемого FcRn рециклинга хорошо известны.

В настоящем изобретении не существует ограничения касательно конкретного «FcRnсвязывающего домена», если он обладает способностью связываться с FcRn, и его примеры включают вариабельные области антитела, Fab и Fc-области антитела, антигенами которых являются FcRn, и их фрагменты. Предпочтительным вариантом осуществления настоящего изобретения являются Fc-области антител или фрагменты, содержащие FcRn-связывающую область Fc-области. Так, например, в качестве «Fcобласти» можно использовать Fc-область, полученную из встречающегося в естественных условиях IgG. Встречающийся в естественных условиях IgG означает полипептид, который содержит такую же аминокислотную последовательность, что и IgG, встречающийся в природе, и принадлежит к классу антител, которые в основном кодируются генами иммуноглобулина гамма. Встречающийся в естественных условиях человеческий IgG означает, например, встречающийся в естественных условиях человеческий IgG1, встречающийся в естественных условиях человеческий IgG2, встречающийся в естественных условиях человеческий IgG3 или встречающийся в естественных условиях человеческий IgG4. Встречающиеся в естественных условиях IgG включают также мутанты и субстанции, полученные из них в естественных условиях. Множество последовательностей аллотипов, образовавшихся в результате генетического полиморфизма, описано в Sequences of Proteins of Immunological Interest, NIH Publication №91-3242 для константной области антитела, такого как человеческий IgG1, человеческий IgG2, человеческий IgG3 и человеческий IgG4, и любую из последовательностей можно применять согласно настоящему изобретению. В частности, аминокислотная последовательность, простирающаяся от положения 356 до положения 358 согласно EU-нумерации, может представлять собой DEL или EEM в случае последовательности человеческого IgG1.

Известные в настоящее время Fc-области антител представляют собой, например, Fc-области IgA1-, IgA2-, IgD-, IgE-, IgG1-, IgG2-, IgG3-, IgG4- и IgM-типа. Например, Fc-область, полученную из встречающегося в естественных условиях антитела в виде человеческого IgG, можно применять в качестве Fc-области антитела согласно настоящему изобретению. Fc-области, полученные из константной области встречающегося в естественных условиях IgG, или более конкретно константной области, полученной из встречающегося в естественных условиях человеческого IgG1 (SEQ ID NO: 1), константной области, полученной из встречающегося в естественных условиях человеческого IgG2 (SEQ ID NO: 2), константной области, полученной из встречающегося в естественных условиях человеческого IgG3 (SEQ ID NO: 3), и константной области, полученной из встречающегося в естественных условиях человеческого IgG4 (SEQ ID NO: 4), можно применять в качестве Fc-области согласно настоящему изобретению.

Встречающиеся в естественных условиях константные области IgG включают также мутанты и субстанции, полученные из них в естественных условиях.

Указанные Fc-области антител можно получать соответствующим методом, например, путем частичного расщепления антител, таких как моноклональные антитела, с помощью протеазы, такой как пепсин, с последующей адсорбцией образовавшихся фрагментов на колонке с белком А или колонке с белком G и последующей элюцией с использованием соответствующего буфера для элюции и т.п. Не существует ограничения касательно конкретной протеазы, если она обладает способностью избирательно расщеплять антитело, такое как моноклональное антитела, в соответствующих для данного фермента реакционных условиях, таких как значение pH, и ее примерами являются пепсин и фицин.

Изотип антитела определяют на основе структуры константной области. Константную область изотипов IgG1, IgG2, IgG3 и IgG4 обозначают как Сү1, Сү2, Сү3 и Сү4 соответственно. Аминокислотные последовательности полипептидов, образующих Fc-области человеческих Сү1, Сү2, Сү3 и Сү4, в качестве примера представлены в SEQ ID NO: 5, 6, 7 и 8. Взаимосвязь между аминокислотными остатками, образующими каждую из указанных аминокислотных последовательностей, и EU-нумерацией по Кэботу (обозначенной в контексте настоящего описания также как EU-индекс) представлена на фиг. 13.

20

Fc-область обозначает область, которая не включает $F(ab')_2$ -фрагмент, который состоит из двух легких цепей и двух тяжелых цепей, содержащих часть константной области между CH1-доменом и CH2-доменом, в результате между двумя тяжелыми цепями образуются межцепочечные дисульфидные связи. Fc-области, которые образуют антигенсвязывающие молекулы, представленные в настоящем описании, можно соответственно получать путем частичного расщепления моноклональных антител в виде IgG1, IgG2, IgG3 или IgG4 или т.п. с помощью протеазы, такой как пепсин, и последующей повторной элюции фракций, адсорбированных на колонке с белком A. Не существует ограничения касательно конкретной протеазы, если она обладает способностью избирательно расщеплять полноразмерное антитело в соответствующих для данного фермента реакционных условиях, таких как значение pH, с получением F (аb')₂-фрагмента. Указанные протеазы представляют собой, например, пепсин и фицин.

Наиболее предпочтительным в качестве FcRn-связывающего домена, предлагаемого в настоящем изобретении, является домен с пониженной активностью связывания с Fсу-рецептором. В контексте настоящего описания понятие Fсу-рецептор (который обозначают в контексте настоящего описания также как Fcy-рецептор, FcyR или FcgR) относится к рецептору, который может связываться с Fc-областью IgG1, IgG2, IgG3 или IgG4 и включает всех представителей, принадлежащих к семейству белков, кодируемых в основном генами Гсу-рецептора. У человека указанное семейство включает (но, не ограничиваясь только ими) FcyRI (CD64), включая изоформы FcyRIa, FcyRIb и FcyRIc; FcyRII (CD32), включая изоформы FcyRIIa (включая аллотипы H131 (тип H) и R131 (тип R), FcyRIIb (включая FcyRIIb-1 и FcyRIIb-2) и FcyRIIc; и FcyRIII (CD16), включая изоформы FcyRIIIa (включая аллотипы V158 и F158) и FcyRIIIb (включая аллотипы FcγRIIIb-NA1 и FcγRIIIb-NA2); а также любые пока не открытые человеческие FcγR и изоформы или аллотипы FcyR. FcyR включают (но не ограничиваясь только ими) рецепторы человека, мышей, крыс, кроликов и обезьян, и могут иметь происхождение из любого организма. Мышиные FcүR включают (но, не ограничиваясь только ими) FcγRI (CD64), FcγRII (CD32), FcγRIII (CD16) и FcγRIII-2 (CD16-2), а также пока не открытые мышиные FcyR и изоформы или аллотипы FcyR. Приемлемые примеры

указанных Fcγ-рецепторов включают человеческий FcγRI (CD64), FcγRIIa (CD32), FcγRIIb (CD32), FcγRIIIa (CD16) и/или FcγRIIIb (CD16).

Среди FcүR присутствуют активирующие рецепторы, которые несут активирующий мотив на основе тирозина иммунорецептора (ITAM), и ингибирующие рецепторы, которые несут ингибирующий мотив на основе тирозина иммунорецептора (ITIM). FcүR подразделяют на активирующие FcүR: FcүRI, FcүRIIa R, FcүRIIa H, FcүRIIIa и FcүRIIIb, и ингибирующий FcүR: FcүRIIb.

Полинуклеотидная последовательность и аминокислотная последовательность FcyRI представлены в NM_000566.3 и NP_000557.1 соответственно; полинуклеотидная последовательность и аминокислотная последовательность FcyRIIa представлены в ВС020823.1 и ААН20823.1 соответственно; полинуклеотидная последовательность и аминокислотная последовательность FcyRIIb представлены в BC146678.1 и AAI46679.1 соответственно; полинуклеотидная последовательность и аминокислотная последовательность FcyRIIIa представлены в ВС033678.1 и ААН33678.1 соответственно и полинуклеотидная последовательность и аминокислотная последовательность FcүIIIb представлены в ВС128562.1 и ААІ28563.1 соответственно (регистрационный номер RefSeq). Известно два типа генных полиморфизмов FcyRIIa, в результате которых аминокислота в положении 131 FcyRIIa заменена на гистидин (H-тип) или аргинин (Rтип) (Ј. Ехр. Мед, 172, 1990, сс. 19-25). Кроме того, известно два типа генных полиморфизмов FcyRIIb, в результате которых аминокислота в положении 232 FcyRIIb заменена на изолейцин (1-тип) или треонин (Т-тип) (Arthritis. Rheum. 46, 2002, сс. 1242-1254). Кроме того, известно два типа генных полиморфизмов ГсүКІІІа, в результате которых аминокислота в положении 158 Fc_YRIIIa заменена на валин (V-тип) или фенилаланин (F-тип) (J. Clin. Invest. 100(5), 1997, сс. 1059-1070). Известно также два типа генных полиморфизмов FcyRIIIb, которые представляют собой NA1-тип и NA2-тип (J. Clin. Invest. 85, 1990, cc. 1287-1295).

Снижение активности связывания с Fcγ-рецептором можно подтверждать с помощью хорошо известных методов, таких как FACS, формат ELISA, скрининг с использованием гомогенного анализа усиленной за счет эффекта близости люминесценции (ALPHA), BIACORE-метода на основе резонанса поверхностного плазмона (SPR) и др. (Proc. Natl. Acad. Sci. USA 103(11), 2006, сс. 4005-4010).

АLPHA-скрининг осуществляют на основе технологии ALPHA, которая основана на описанном ниже принципе, с использованием двух типов гранул, а именно, донорских и акцепторных гранулы. Люминесцентные сигналы поддаются обнаружению только тогда, когда происходит биологическое взаимодействие молекул, связанных с грануламидонорами, с молекулами, связанными с гранулами-акцепторами, и когда обе гранулы находятся в непосредственной близости друг от друга. Возбужденный лазерным пучком фотосенсибилизатор в гранулах-донорах превращает кислород окружающей среды в возбужденный синглетный кислород. Когда синглетный кислород диффундирует из гранул-доноров и достигает гранул-акцепторов, локализованных в непосредственной близости, то индуцируется хемилюминесцентная реакция в гранулах-акцепторах, что в итоге приводит к испусканию света. Если молекулы, связанные с гранулами-донорами, не взаимодействуют с гранулами-акцепторами, то хемилюминесцентной реакции не происходит, поскольку синглетный кислород, который продуцируется гранулами-донорами, не достигает гранул-акцепторов.

Например, когда антигенсвязывающая молекула содержит Fc-область в качестве FcRn-связывающего домена, то получают антигенсвязывающую молекулу, которая имеет Fc-область дикого типа, и антигенсвязывающую молекулу, которая имеет

мутантную Fc-область, полученную путем добавления аминокислотных мутаций для изменения связывания с Гсу-рецептором, биотинилированную антигенсвязывающую молекулу связывают с гранулами-донорами, а меченный глутатион-S-трансферазой (GST) Fcy-рецептор связывают с гранулами-акцепторами. В присутствии антигенсвязывающей молекулы, имеющей мутантную Fc-область, антигенсвязывающая молекула, имеющая Fc-область дикого типа, взаимодействует с Fcy-рецептором и образует сигналы с длиной волны от 520 до 620 нм. Когда антигенсвязывающая молекула, имеющая мутантную Fc-область, является немеченой, то она конкурирует с антигенсвязывающей молекулой, имеющей Fc-область дикого типа, за взаимодействие с Гсу-рецептором. Относительную аффинность связывания можно оценивать, определяя количественно снижение флуоресценции в результате конкуренции. Методы биотинилирования полипептидных комплексов, таких как антитела, с помощью сульфо-NHS-биотина или подобных агентов являются известными. Приемлемые методы введения GST-метки в Fcy-рецептор включают метод, при котором экспрессируют Fcyрецептор и GST в клетке, несущий вектор, который обеспечивает экспрессию слитого гена, полученного путем слияния полинуклеотида, который кодирует Гсу-рецептор, в рамке считывания с полинуклеотидом, который кодирует GST, и затем осуществляют очистку с помощью содержащей глутатион колонки, которую можно адаптировать соответствующим образом. Индуцированные сигналы можно анализировать, например, посредством подгонки к односайтовой модели конкуренции на основе нелинейного регрессионного анализа с использованием такой программы, как GRAPHPAD PRISM (фирма GraphPad; Сан-Диего).

Одну из субстанций (лиганд), предназначенных для исследования взаимодействия, иммобилизуют на тонком слое (пленке) золота сенсорного чипа и путем проникновения света на заднюю поверхность сенсорного чипа так, что имеет место полное отражение на границе раздела между тонким слоем золота и стеклом, интенсивность отраженного света в определенном сайте частично снижается (SPR-сигнал). Подготавливают другую субстанцию (аналит), предназначенную для исследования взаимодействия, для инъекции на поверхность сенсорного чипа; и когда лиганд связывается с аналитом, масса иммобилизованной молекулы-лиганда возрастает, и показатель преломления растворителя на поверхности сенсорного чипа изменяется. В результате указанного изменения показателя преломления положение SPR-сигнала сдвигается (и наоборот, положение сигнала возвращается в исходное, если происходит диссоциация указанного связывания). С помощью Віасоге-системы определяют уровень описанного выше сдвига, или более конкретно изменение массы в зависимости от времени, откладывая изменение массы на поверхности сенсорного чипа по вертикальной оси, и таким образом получают количественные данные (сенсограмма). Кинетические параметры, такие как константа скорости ассоциации (ka) и константа скорости диссоциации (kd), определяют из представленных в виде кривых сенсограмм, и определяют аффинность (КD) как отношение указанных констант. BIACORE-метод можно применять также в качестве метода для анализа ингибирования. Примеры такого метода для анализа ингибирования описаны в Proc. Natl. Acad. Sci. USA 103(11), 2006, cc. 4005-4010.

В контексте настоящего описания «пониженная активность связывания с Fcγрецептором» означает, например, что при использовании описанного выше метода анализа активность связывания тестируемой антигенсвязывающей молекулы составляет 50% или менее, предпочтительно 45% или менее, 40% или менее, 35% или менее, 30% или менее, 20% или менее или 15% или менее или наиболее предпочтительно 10% или менее, 9% или менее, 8% или менее, 7% или менее, 6% или менее, 5% или менее, 4% или менее, 3% или менее, 2% или менее, или 1% или менее, по сравнению с активностью связывания контрольной антигенсвязывающей молекулы, содержащей Fc-область.

В качестве приемлемой контрольной антигенсвязывающей молекулы можно применять антигенсвязывающие молекулы, которые имеют, например, домен, содержащий Fc-область моноклонального антитела в виде IgG1, IgG2, IgG3 или IgG4. Структуры Fc-областей представлены в SEQ ID NO: 1 (А добавлен к N-концу последовательности, представленной в RefSeq под регистрационным номером AAC82527.1), SEQ ID NO: 2 (А добавлен к N-концу последовательности, представленной в RefSeq под регистрационным номером AAB59393.1), SEQ ID NO: 3 (А добавлен к Nконцу последовательности, представленной в RefSeq под регистрационным номером CAA27268.1) и SEQ ID NO: 4 (А добавлен к N-концу последовательности, представленной в RefSeq под регистрационным номером AAB59394.1). Кроме того, когда в качестве тестируемой субстанции используют антигенсвязывающую молекулу, содержащую мутант Fc-области антитела конкретного изотипа, то воздействие мутации мутанта на активность связывания с Гсу-рецептором оценивают с использованием в качестве контроля антигенсвязывающей молекулы, которая имеет Fc-область антитела такого же конкретного изотипа. Таким путем можно получать антигенсвязывающие молекулы, содержащие мутантную Fc-область с установленной пониженной активностью связывания с Гсу-рецептором.

20 Примеры таких мутантов включают мутанты с делецией аминокислот 231A-238S (WO 2009/011941) или мутанты C226S, C229S, P238S, (C220S) (J. Rheumatol 34, 2007, с. 11), C226S и C229S (Hum. Antibod. Hybridomas 1(1), 1990, сс. 47-54); C226S, C229S, E233P, L234V, и L235A (Blood 109, 2007, сс. 1185-1192), в которых нумерация аминокислоты соответствует EU-нумерации.

Таким образом, приемлемые примеры включают антигенсвязывающие молекулы, имеющие Fc-область с заменой любой из аминокислот в положениях 220, 226, 229, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 264, 265, 266, 267, 269, 270, 295, 296, 297, 298, 299, 300, 325, 327, 328, 329, 330, 331 и 332 согласно EU-нумерации в аминокислотной последовательности, образующей Fc-область антитела конкретного изотипа.

Изобретение не ограничено конкретным изотипом антитела, из которого имеет происхождение Fc-область, и можно использовать соответствующую Fc-область, полученную из моноклонального антитела в виде IgG1, IgG2, IgG3 или IgG4, и можно применять Fc-область, полученную из встречающегося в естественных условиях человеческого антитела в виде IgG1.

Например, предпочтительно можно применять антигенсвязывающую молекулу, которая имеет Fc-область, содержащую любую из указанных ниже замен, положение которой определяется согласно EU-нумерации, аминокислот, образующих Fc-область антитела в виде IgG1 (каждый номер обозначает положение аминокислотного остатка согласно EU-нумерации; и однобуквенный код аминокислоты, который находится перед номером, обозначает аминокислотный остаток до его замены, а однобуквенный код аминокислоты, расположенный за номером, обозначает аминокислотный остаток после замены):

- (a) L234F, L235E, P331S,
- (б) C226S, C229S, P238S,
- (B) C226S, C229S,

35

45

(r) C226S, C229S, E233P, L234V, L235A;

или Fc-область с делецией аминокислот в положениях 231-238 из аминокислот, образующих Fc-область антитела в виде IgG1.

Кроме того, предпочтительно можно применять антигенсвязывающую молекулу, которая имеет Fc-область, содержащую любую из указанных ниже замен, положение которой определяется согласно EU-нумерации, аминокислот, образующих Fc-область антитела в виде IgG2 (каждый номер обозначает положение аминокислотного остатка согласно EU-нумерации; и однобуквенный код аминокислоты, который находится перед номером, обозначает аминокислотный остаток до его замены, а однобуквенный код аминокислоты, расположенный за номером, обозначает аминокислотный остаток после замены)

- (д) H268Q, V309L, A330S и P331S,
- 10 (e) V234A,
 - (ж) G237A,
 - (3) V234A и G237A,
 - (и) A235E и G237A,
 - (к) V234A, A235E, G237A.

Кроме того, предпочтительно можно применять антигенсвязывающую молекулу, которая имеет Fc-область, содержащую любую из указанных ниже замен, положение которой определяется согласно EU-нумерации, аминокислот, образующих Fc-область антитела в виде IgG3 (каждый номер обозначает положение аминокислотного остатка согласно EU-нумерации; и однобуквенный код аминокислоты, который находится
 перед номером, обозначает аминокислотный остаток до его замены, а однобуквенный код аминокислоты, расположенный за номером, обозначает аминокислотный остаток после замены)

- (л) F241A,
- (M) D265A,
- 25 (H) V264A.

Кроме того, предпочтительно можно применять антигенсвязывающую молекулу, которая имеет Fc-область, содержащую любую из указанных ниже замен, положение которой определяется согласно EU-нумерации, аминокислот, образующих Fc-область антитела в виде IgG4 (каждый номер обозначает положение аминокислотного остатка согласно EU-нумерации; и однобуквенный код аминокислоты, который находится перед номером, обозначает аминокислотный остаток до его замены, а однобуквенный код аминокислоты, расположенный за номером, обозначает аминокислотный остаток после замены):

- (o) L235A, G237A, E318A,
- (π) L235E,

35

(p) F234A, L235A.

Другие предпочтительные примеры включают антигенсвязывающие молекулы, имеющие Fc-область, в которой любая из аминокислот в положениях 233, 234, 235, 236, 237, 327, 330 и 331 согласно EU-нумерации аминокислот, образующих Fc-область встречающегося в естественных условиях человеческого антитела в виде IgG1, заменена на аминокислоты, которые имеют соответствующую EU-нумерацию в соответствующем IgG2 или IgG4.

Другие предпочтительные примеры могут включать антигенсвязывающие молекулы, имеющие Fc-область, в которой одна или несколько аминокислот в положениях 234, 235 и 297 согласно EU-нумерации аминокислот, образующих Fc-область встречающегося в естественных условиях человеческого антитела в виде IgG1, заменена(ы) на другие аминокислоты. Настоящее изобретение не ограничено конкретным типом аминокислоты после замены, однако наиболее предпочтительной является антигенсвязывающая

молекула, имеющая Fc-область, в которой одна или несколько аминокислот в положениях 234, 235 и 297 заменена(ы) на аланин.

10

30

Другие предпочтительные примеры могут включать антигенсвязывающие молекулы, имеющие Fc-область, в которой аминокислота в положении 265 согласно EU-нумерации аминокислот, образующих Fc-область антитела в виде IgG1, заменена на другую аминокислоту. Настоящее изобретение не ограничено конкретным типом аминокислоты после замены, однако наиболее предпочтительной является антигенсвязывающая молекула, имеющая Fc-область, в которой аминокислота в положении 265 заменена на аланин.

Понятия «домен, связывающийся со специфическим для рака антигеном», «домен, связывающийся с представителем суперсемейства фактора некроза опухоли (TNF)», «домен, связывающийся с представителем суперсемейства рецептора фактора некроза опухоли (TNF)» и «домен, связывающийся с комплексом Т-клеточного рецептора» (далее в контексте настоящего описания четыре связывающих домена вместе обозначают как антигенсвязывающие домены), включенные в антигенсвязывающие молекулы, предлагаемые в настоящем изобретении, относятся к областям, которые специфически связываются с полными антигенами или с их частями, которые представляют собой специфические для рака антигены, факторы, принадлежащие к суперсемейству TNF, факторы, принадлежащие к суперсемейству TNF-рецептора, или комплекс T-клеточного рецептора; и примером связывающего домена является область, которая содержит антигенсвязывающую область антитела. Когда молекулярная масса антигена является большой, то антигенсвязывающая область антитела может связываться только с конкретным участком антигена. Указанный конкретный участок называют «эпитопом». Антигенсвязывающий домен может состоять из одного или нескольких вариабельных доменов антитела. Предпочтительно антигенсвязывающий домен содержит вариабельную область легкой цепи (VL) антитела и вариабельную область тяжелой цепи (VH) антитела. Указанные предпочтительные антигенсвязывающие домены включают, например, «одноцепочечный Fv (scFv)», «одноцепочечное антитело», «Fv», «одноцепочечный Fv2 (scFv2)», «Fab» и «F(ab')2» и т.п.

В контексте настоящего описания понятие «специфический для рака антиген» относится к антигену, экспрессируемому раковыми клетками, который обусловливает возможность различать раковые клетки и здоровые клетки; и, например, он включает антигены, которые экспрессируются на клетках, которые экспрессируются при приобретении клетками признака злокачественности, или содержат аномальные сахарные цепи, которые появляются на белковых молекулах или на клеточной поверхности, когда клетки становятся раковыми. Конкретные примеры включают ALK-рецептор (рецептор плейотрофина); плейотрофин; антиген карциномы поджелудочной железы KS 1/4, антиген карциномы яичника (CA125); простатический кислый фосфат; простатсецифический антиген (PSA); ассоциированный с меланомой антиген р97; меланомный антиген др75; высокомолекулярный меланомный антиген (HMW-MAA); простатспецифический мембранный антиген; карциноэмбриональный антиген (СЕА); антиген, представляющий собой полиморфный эпителиальный муцин; человеческий антиген жировых глобул молока; антигены, ассоциированные с колоректальным раком, такие как CEA, TAG-72, CO17-1A, GICA 19-9, CTA-1 и LEA; антиген лимфомы Беркитта-38.13; CD19; антиген человеческой В-лимфомы CD20; CD33; специфические для меланомы антигены, такие как ганглиозид GD2, ганглиозид GD3, ганглиозид GM2 и ганглиозид GM3; опухольспецифический трансплантационный антиген клеточной поверхности (TSTA); индуцируемые вирусами опухолевые антигены,

включая Т-антиген и оболочечные антигены опухолей, индуцированных ДНКовыми вирусами и РНКовыми вирусами; СЕА ободочной кишки; онкоэмбриональные антигены, такие как онкоэмбриональный трофобластный гликопротеин 5Т4, онкоэмбриональный антиген опухоли мочевого пузыря; α-фетопротеин; дифференцированные антигены, такие как антигены человеческой карциномы легкого L6 и L20; антигены фибросаркомы; антиген человеческого Т-клеточного лейкоза Gp37; неогликопротеин; сфинголипиды; антигены рака молочной железы, такие как EGFR (рецептор эпидермального фактора роста); NY-BR-16; NY-BR-16 и антиген HER2 (р185HER2); полиморфный эпителиальный муцин (РЕМ); антиген злокачественных человеческих лимфоцитов АРО-1; дифференцированные антигены, такие как антиген I, обнаруженный в фетальных эритроцитах; антиген I первичной эндодермы, обнаруженный в эритроцитах взрослых; эмбрионы до имплантации; I(Ma), обнаруженный при раке желудка; М18 и М39, обнаруженные в эпителии молочной железы; SSEA-1, VEP8, VEP9, Myl и VIM-D5, обнаруженные в миелодных клетках; D156-22, обнаруженный при колоректальном раке; TRA-1-85 (антиген группы крови H); SCP-1, обнаруженный при раке яичек и яичников; С14, обнаруженный при колоректальном раке; F3, обнаруженный при раке легкого; АН6, обнаруженный при раке желудка; Ү-гаптен; Ley (антиген группы крови Y Льюиса), обнаруженный в клетках эмбриональной карциномы; TL5 (антиген группы крови A); EGF-рецептор, обнаруженный в A431-клетках; антиген из E1-серий (антиген группы крови В), обнаруженный в поджелудочной железе; FC10.2, обнаруженный в клетках эмбриональной карциномы; антиген рака желудка; СО-514 (антиген группы крови Lea), обнаруженный при аденокарциномах; NS-10, обнаруженный при аденокарциномах; CO-43 (антиген группы крови Leb); G49, обнаруженный в EGFрецепторе А431-клеток; аМН2 (антиген группы крови ALeb/Ley), обнаруженный при раке ободочной кишки; 19.9, обнаруженный при раке ободочной кишки; муцины, характерные для рака желудка; T5A7, обнаруженный в миелоидный клетках; R24, обнаруженный при меланоме; 4.2, GD3, D1.1, OFA-1, GM2, OFA-2, GD2 и M1:22:25:8, обнаруженные в клетках эмбриональной карциномы, а также SSEA-3 и SSEA-4, обнаруженные у эмбрионов на стадии 4-8 клеток; антиген подкожной Т-клеточной лимфомы; антиген MART-1; сиалилированный Tn-антиген (STn); антиген рака ободочной кишки NY-CO-45; антиген рака легкого NY-LU-12, вариант A; антиген аденокарциномы ART1; ассоциированный с паранеопластическим синдромом антиген рака головного мозга-яичек (онконевральный антиген МА2; параненеопластичесакий невральный антиген; невроонкологический вентральный антиген 2 (NOVA2); антиген карциномы гемоцитов, связанной с геном 520; опухольассоциированный антиген СО-029; опухольассоциированные антигены MAGE-C1 (раково-тестикуларный антиген CT7), MAGE-B1 (антиген MAGE-XP), MAGE-B2 (DAM6), MAGE-2, MAGE-4a, MAGE-4b и MAGE-X2; раково-тестикуларный антиген (NY-EOS-1); YKL-40, фрагменты любого из вышеуказанных полипептидов или структуры, образовавшиеся в результате их модификации (например, упомянутая выше модифицированная фосфатная группа или сахарная цепь); EpCAM; EREG; CA19-9; CA15-3; сиалилированный SSEA-1(SLX); HER2; PSMA; CEA и CLEC12A. Специфические для рака антигены, которые становятся мишенями для доменов, которые связываются со специфическими для рака антигенами, предлагаемыми в настоящем изобретении, предпочтительно представляют собой, в частности, антигены, которые экспрессируются на клеточной поверхности, и примеры указанных специфических для рака антигенов включают CD19, CD20, EGFR, HER2,

Кроме того, в качестве факторов, принадлежащих к «суперсемейству TNF» или к

EpCAM и EREG.

«суперсемейству TNF-рецептора», известны лиганды, имеющие трехмерную структуру, и рецепторы с трехмерной структурой, с которыми связываются лиганды, которые принимают участие в активации различных иммунных клеток (Nat. Rev. Immunol., 12, 2012, сс. 339-351). Примеры факторов, принадлежащих к суперсемейству TNF или суперсемейству TNF-рецептора, включают CD137, CD137L, CD40, CD40L, OX40, OX40L, CD27, CD70, HVEM, LIGHT, RANK, RANKL, CD30, CD153, GITR и GITRL. Предпочтительными факторами являются, например, CD137 и CD40. Наиболее предпочтительным фактором является, например, CD137.

Кроме того, «комплекс Т-клеточного рецептора» может представлять собой сам Т-клеточный рецептор или молекулу-адаптер, входящую в комплекс Т-клеточного рецептора вместе с Т-клеточным рецептором. Пригодной молекулой-адаптером является CD3.

Для Т-клеточного рецептора эпитопом, с которым связывается домен, связывающийся с Т-клеточным рецептором, может быть вариабельная область или константная область, но предпочтительным является эпитоп, присутствующий в константной области. Примеры последовательностей константной области включают α-цепь Т-клеточного рецептора, которая имеет регистрационный № RefSeq CAA26636.1 (SEQ ID NO: 9), β-цепь Т-клеточного рецептора, которая имеет регистрационный № RefSeq C25777 (SEQ ID NO: 10), γ1-цепь Т-клеточного рецептора, которая имеет регистрационный № RefSeq A26659 (SEQ ID NO: 11), γ2-цепь Т-клеточного рецептора, которая имеет регистрационный № RefSeq AAB63312.1 (SEQ ID NO: 12) и δ-цепь Т-клеточного рецептора, которая имеет регистрационный № RefSeq AAA61033.1 (SEQ ID NO: 13).

В настоящем изобретении, когда «CD3-связывающий домен» применяют в качестве домена, связывающегося с комплексом Т-клеточного рецептора, то CD3-связывающий домен может представлять собой один или несколько вариабельных доменов антитела. Предпочтительно CD3-связывающий домен включает вариабельную область легкой цепи (VL) и вариабельную область тяжелой цепи (VH) антитела к CD3. Примеры приемлемых указанных CD3-связывающих доменов включают «одноцепочечный Fv (scFv)», «одноцепочечное антитело», «Fv», «одноцепочечный Fv2 (scFv2)», «Fab», «F (ab')₂» и т.п.

СD3-связывающий домен, предлагаемый в настоящем изобретении, может включать домены, которые связываются с любым эпитопом, если он в качестве эпитопа присутствует в γ-цепи, δ-цепи или ε-цепи, образующей человеческий CD3. В настоящем изобретении предпочтительно применять CD3-связывающий домен, который содержит вариабельную область легкой цепи (VL) антитела к CD3 и вариабельную область тяжелой цепи (VH) антитела к CD3 и который связывается с эпитопом, присутствующим во внеклеточной области ε-цепи человеческого комплекса CD3. В качестве указанного CD3-связывающего домена можно применять CD3-связывающий домен, который содержит вариабельную область легкой цепи (VL) и вариабельную область тяжелой цепи (VH) антитела ОКТ3 (Proc. Natl. Acad. Sci. USA 77, 1980, сс. 4914-4917) или различных известных антител к CD3. Предпочтительно можно применять CD3-связывающий домен, полученный из антитела к CD3, которое обладает требуемыми свойствами и которое получают путем иммунизации требуемого животного γ-цепью, δ-цепью или ε-цепью, образующей человеческий CD3, с использованием описанного выше метода.

⁴⁵ Предпочтительно можно применять человеческие и соответственно гуманизированные антитела, описанные ниже, в качестве антитела к CD3, которое служит источником CD3-связывающего домена. Структуры γ-цепи, δ-цепи или ε-цепи, которые образуют CD3, представлены в виде полинуклеотидных последовательностей SEQ ID NO: 14

(NM_000073.2), SEQ ID NO: 16 (NM_000732.4) и SEQ ID NO: 18 (NM_000733.3) соответственно и в виде полипептидных последовательностей SEQ ID NO: 15 (NP_000064.1), SEQ ID NO: 17 (NP_000723.1) и SEQ ID NO: 19 (NP_000724.1) соответственно (в скобках представлены регистрационные номера RefSeq).

5

10

25

В предпочтительном варианте осуществления изобретения «антигенсвязывающая молекула», предлагаемая в настоящем изобретении, включает антитело, которое содержит вариабельную область антитела, предлагаемого в настоящем изобретении.

Примерами антител, предлагаемых в настоящем изобретении, являются следующие антитела:

- [1] антитело, содержащее аминокислотную последовательность SEQ ID NO: 66 в качестве вариабельной области тяжелой цепи и аминокислотную последовательность SEQ ID NO: 85 в качестве вариабельной области легкой цепи;
- [2] антитело, содержащее аминокислотную последовательность SEQ ID NO: 67 в качестве вариабельной области тяжелой цепи и аминокислотную последовательность SEQ ID NO: 86 в качестве вариабельной области легкой цепи;
- [3] антитело, содержащее аминокислотную последовательность SEQ ID NO: 70 в качестве вариабельной области тяжелой цепи и аминокислотную последовательность SEQ ID NO: 89 в качестве вариабельной области легкой цепи;
- [4] а антитело, содержащее аминокислотную последовательность SEQ ID NO: 76 в качестве вариабельной области тяжелой цепи и аминокислотную последовательность SEQ ID NO: 95 в качестве вариабельной области легкой цепи;
 - [5] антитело, содержащее аминокислотную последовательность SEQ ID NO: 77 в качестве вариабельной области тяжелой цепи и аминокислотную последовательность SEQ ID NO: 96 в качестве вариабельной области легкой цепи;
 - [6] антитело, содержащее аминокислотную последовательность SEQ ID NO: 78 в качестве вариабельной области тяжелой цепи и аминокислотную последовательность SEQ ID NO: 97 в качестве вариабельной области легкой цепи;
 - [7] антитело по одному из п.п. [1]-[6], содержащее аминокислотную последовательность SEQ ID NO: 99 в качестве константной области тяжелой цепи и аминокислотную последовательность SEQ ID NO: 59 или аминокислотную последовательность SEQ ID NO: 60 в качестве константной области легкой цепи;
 - [8] антитело, обладающее активностью, эквивалентной активности антитела по одному из п.п. [1]-[7], и
- [9] антитело, которое связывается с таким же эпитопом, что эпитоп, с которым связывается антитело по одному из п.п. [1]-[7].

Касательно антитела по п. [8] понятие «эквивалентная активность» относится к агонистической активности в отношении CD137, которая составляет 70% или более, предпочтительно 80% или более и более предпочтительно 90% или более от активности связывания антитела по одному из п.п. [1]-[7]. В настоящем изобретении предложено также антитело по п. [9], которое связывается с таким же эпитопом, что эпитоп, с которым связывается антитело к CD137, описанное в настоящем изобретении. Указанное антитело можно получать, например, с помощью описанного ниже метода.

Имеет ли тестируемое антитело общий эпитоп с определенным антителом, можно оценивать на основе конкуренции между двумя антителами за один и тот же эпитоп. Конкуренцию между антителами можно определять с помощью анализа перекрестной

блокады или т.п. Например, анализ ELISA в условиях конкуренции представляет собой предпочтительный анализ перекрестной блокады. В частности, в анализе перекрестной блокады белок CD137, применяемый для сенсибилизации лунок титрационного

микропланшета, предварительно инкубируют в присутствии потенциально конкурирующего антитела или без него, а затем добавляют антитело к CD137, предлагаемого в настоящем изобретении. Количество антитела к CD137, предлагаемого в настоящем изобретении, связанного с белком CD137 в лунках, косвенно коррелирует со способностью к связыванию потенциально конкурирующего антитела (тестируемого антитела), которое конкурирует за связывание с тем же самым эпитопом. Это означает, что чем выше аффинность тестируемого антитела к тому же самому эпитопу, тем меньше количество антитела к CD137, предлагаемого в настоящем изобретении, которое связано с сенсибилизированными белком CD137 лунками, и тем больше количество тестируемого антитела, которое связано с сенсибилизированными белком CD137 лунками.

Количество связанного с лунками антитела можно легко определять путем предварительного мечения антитела. Например, меченное биотином антитело можно количественно измерять, используя конъюгат авидин/пероксидаза и соответствующий субстрат. В частности, анализ перекрестной блокады, в котором применяют ферментную метку, такую как пероксидаза, обозначают как «конкурентный ELISA-анализ». Антитело можно метить другими предназначенными для мечения субстанциями, которые можно обнаруживать или количественно измерять. В частности, известны радиоактивные метки, флуоресцентные метки и т.п.

Кроме того, когда тестируемое антитело имеет константную область, полученную из вида, отличного от того, из которого получено антитело к CD137, предлагаемое в настоящем изобретении, то количество антитела, связанного с лунками, можно оценивать количественно, используя меченое антитело, которое распознает константную область этого антитела. Альтернативно этому, если антитела получают из одного и того же вида, но они принадлежат к различным классам, то количество антител, связанных с лунками, можно количественно оценивать, используя антитела, которые позволяют различать индивидуальные классы.

20

40

Если антитело-кандидат может блокировать связывание антитела к CD137 по меньшей мере на 20%, предпочтительно по меньшей мере на 20-50% и еще более предпочтительно по меньшей мере на 50% по сравнению с активностью связывания, полученной в контрольном эксперименте, который осуществляют в отсутствии потенциально конкурирующего антитела, то потенциально конкурирующее антитело представляет собой либо антитело, которое связывается практически с тем же самым эпитопом, либо антитело, которое конкурирует за связыванием с тем же самым эпитопом, что и антитело к CD137, предлагаемое в настоящем изобретении.

Предпочтительным примером антитела, которое связывается с тем же самым эпитопом, что и эпитоп, с которым связывается антитело по одному из п.п. [1]-[7], является, например, антитело, которое распознает область, содержащую последовательность

SPCPPNSFSSAGGQRTCDICRQCKGVFRTRKECSSTSNAECDCTPGFHCLGAGCS MCEQDCKQGQELTKKGC (SEQ ID NO: 113) в белке CD137. Другой пример включает антитело, которое распознает область, содержащую последовательность DCTPGFHCLGAGCSMCEQDCKQGQELTKKGC (SEQ ID NO: 108) в белке CD137.

Биспецифическое антитело к противораковому антигену /к человеческому CD137, которое обладает требуемыми противоопухолевыми видами активности, можно получать путем модификации вышеописанного антитела к человеческому CD137 с помощью антитела к специфическому для рака антигену (например, антитела к

человеческому GPC3) с получением биспецифического антитела, и оценки его зависящего от специфического для рака антигена агонистического действия в отношении CD137.

Одним из вариантов осуществления настоящего изобретения является (но, не ограничиваясь только им) биспецифическое антитело, которое содержит домен, связывающийся со специфическим для рака антигеном, и домен, связывающийся с человеческим CD137.

Примерами биспецифического антитела, предлагаемого в настоящем изобретении, являются следующие антитела:

[I] биспецифическое антитело, содержащее аминокислотную последовательность SEQ ID NO: 122 (вариабельная область тяжелой цепи) и аминокислотную последовательность SEQ ID NO: 123 (вариабельная область легкой цепи) в качестве связывающего человеческий CD137 домена;

[II] биспецифическое антитело, содержащее аминокислотную последовательность SEQ ID NO: 124 (вариабельная область тяжелой цепи) и аминокислотную последовательность SEQ ID NO: 82 (вариабельная область легкой цепи) в качестве связывающего человеческий CD137 домена;

[III] биспецифическое антитело, содержащее аминокислотную последовательность SEQ ID NO: 125 (вариабельная область тяжелой цепи) и аминокислотную последовательность SEQ ID NO: 84 (вариабельная область легкой цепи) в качестве связывающего человеческий CD137 домена;

[IV] антитело, которое связывается с тем же эпитопом, что и эпитоп, с которым связывается биспецифическое антитело по одному из п.п. [I]-[III].

В зависимости от ракового антигена-мишени специалисты в данной области легко могут выбирать последовательность вариабельной области тяжелой цепи и последовательность вариабельной области легкой цепи, которые связываются с раковым антигеном, в качестве вариабельной области тяжелой цепи и вариабельной области легкой цепи, которые можно включать в домен, связывающийся со специфическим для рака антигеном.

В настоящем изобретении предложено также биспецифическое антитело по п. [IV], которое связывается с тем же эпитопом, что и эпитоп, с которым связывается биспецифическое антитело к специфическому для рака антигену /к человеческому CD137, указанное в настоящем изобретении. Указанное антитело можно получать, например, с помощью описанного ниже метода.

Имеет ли тестируемое антитело общий эпитоп с определенным антителом, можно оценивать на основе конкуренции между двумя антителами за один и тот же эпитоп. Конкуренцию между антителами можно определять с помощью анализа перекрестной блокады или т.п. Например, анализ ELISA в условиях конкуренции представляет собой предпочтительный анализ перекрестной блокады. В частности, в анализе перекрестной блокады белок CD137, применяемый для сенсибилизации лунок титрационного микропланшета, предварительно инкубируют в присутствии потенциально конкурирующего антитела или без него, а затем добавляют антитело к CD137, предлагаемого в настоящем изобретении. Количество антитела к CD137, предлагаемого в настоящем изобретении, связанного с белком CD137 в лунках, косвенно коррелирует со способностью к связыванию потенциально конкурирующего антитела (тестируемого антитела), которое конкурирует за связывание с тем же самым эпитопом. Это означает, что чем выше аффинность тестируемого антитела к тому же самому эпитопу, тем меньше количества антитела к CD137, предлагаемого в настоящем изобретении, связано с сенсибилизированными белком CD137 лунками и тем больше количества тестируемого

антитела связано с сенсибилизированными белком CD137 лунками.

Количество связанного с лунками антитела можно легко определять путем предварительного мечения антитела. Например, меченное биотином антитело можно количественно оценивать, используя конъюгат авидин/пероксидаза и соответствующий субстрат. В частности, анализ перекрестной блокады, в котором применяют ферментную метку, такую как пероксидаза, обозначают как «конкурентный ELISA-анализ». Антитело можно метить другими предназначенными для мечения субстанциями, которые можно обнаружить или количественно оценивать. В частности, известны радиоактивные метки, флуоресцентные метки и т.п.

Кроме того, когда тестируемое антитело имеет константную область, полученную из вида, отличного от того, из которого получено антитело к CD137, предлагаемое в настоящем изобретении, то количество антитела, связанного с лунками, можно измерять, используя меченое антитело, которое распознает константную область этого антитела. Альтернативно этому, если антитела получают из одного и того же вида, но они принадлежат к различным классам, то количество антител, связанных с лунками, можно измерять, используя антитела, которые позволяют различать индивидуальные классы.

Если антитело-кандидат может блокировать связывание антитела к CD137 по меньшей мере на 20%, предпочтительно по меньшей мере на 20-50% и еще более предпочтительно по меньшей мере на 50% по сравнению с активностью связывания, полученной в контрольном эксперименте, который осуществляют в отсутствии потенциально конкурирующего антитела, то потенциально конкурирующее антитело представляет собой либо антитело, которое связывается практически с тем же самым эпитопом, либо антитело, которое конкурирует за связыванием с тем же самым эпитопом, что и антитело к CD137, предлагаемое в настоящем изобретении.

В другом варианте осуществления изобретения способность тестируемого антитела конкурентно или перекрестно конкурентно связываться с другим антителом, специалисты в данной области могут легко определять с использованием стандартного анализа связывания, такого как BIAcore-анализ или анализ методом проточной цитометрии, которые известны в данной области.

25

30

Методы определения пространственной конформации эпитопов включают, например, рентгеновскую кристаллографию и двухмерный ядерный магнитный резонанс (см., например, Epitope Mapping Protocols in Methods in Molecular Biology, под ред. Morris, т. 66, 1996).

Предпочтительными примерами биспецифического антитела, которое связывается с тем же самым эпитопом, что и эпитоп человеческого CD137, с которым связывается биспецифическое антитело по одному из п.п. [I]-[III], являются биспецифические антитела, которое распознает область, содержащую последовательность

SPCPPNSFSSAGGQRTCDICRQCKGVFRTRKECSSTSNAECDCTPGFHCLGAGCS MCEQDCKQGQELTKKGC (SEQ ID NO: 113), область, содержащую последовательность DCTPGFHCLGAGCSMCEQDCKQGQELTKKGC (SEQ ID NO: 108), область, содержащую последовательность

LQDPCSNCPAGTFCDNNRNQICSPCPPNSFSSAGGQRTCDICRQCKGVFRTRKEC SSTSNAEC (SEQ ID NO: 111), или область, содержащую последовательность LQDPCSNCPAGTFCDNNRNQICSPCPPNSFSSAGGQRTC (SEQ ID NO: 106), в человеческом белке CD137. Более предпочтительные примеры включают биспецифические антитела, которые распознают область, содержащую

последовательность

10

35

LQDPCSNCPAGTFCDNNRNQICSPCPPNSFSSAGGQRTCDICRQCKGVFRTRKEC SSTSNAEC (SEQ ID NO: 111) или область, содержащую последовательность LQDPCSNCPAGTFCDNNRNQICSPCPPNSFSSAGGQRTC (SEQ ID NO: 106) в человеческом белке CD137.

Вариантом осуществления настоящего изобретения является (но, не ограничиваясь только им) биспецифическое антитело, которое содержит домен, связывающийся со специфическим для рака антигеном, и домен, связывающийся с человеческим CD40.

В зависимости от ракового антигена-мишени специалисты в данной области легко могут выбирать последовательность вариабельной области тяжелой цепи и последовательность вариабельной области легкой цепи, которые связываются с раковым антигеном, в качестве вариабельной области тяжелой цепи и вариабельной области легкой цепи, которые можно включать в домен, связывающийся со специфическим для рака антигеном.

Связывающая активность антител

Антигенсвязывающую активность антитела можно оценивать с помощью известных методов (Antibodies: A Laboratory Manual (под ред. Harlow, David Lane, изд-во Cold Spring Harbor Laboratory, 1988). Например, можно применять твердофазный иммуноферментный анализ (ELISA), ферментный иммуноанализ (EIA), радиоиммуноанализ (PИA), метод разделения клеток на основе возбуждения флуоресценции (FACS), скрининг с использованием гомогенного анализа усиленной за счет эффекта близости люминесценции (ALPHA), BIACORE-метод на основе поверхностного плазмонного резонанса (SPR) или флуороиммуноанализ. Методы оценки связывающей активности антитела с антигеном, экспрессируемым клеткой, включают, например, методы, описанные на сс. 359-420 в «Antibodies: A Laboratory Manual».

В частности, методы, в которых используют проточный цитометр, можно успешно применять в качестве метода измерения связывания между антигеном, экспресируемым на поверхности клеток, суспендированных в буфере или т.п., и антителом против антигена. Проточные цитометры, которые можно использовать, включают, например, FACSCantoTM II, FACSAriaTM, FACSArrayTM, FACSVantageTM SE, и FACSCaliburTM (все вышеуказанные устройства фирмы BD Biosciences); и EPICS ALTRA HyPerSort Cytomics FC 500, EPICS XL-MCL ADC EPICS XL ADC и Cell Lab Quanta/Cell Lab Quanta SC (все вышеуказанные устройства фирмы Beckman Coulter).

Примеры приемлемого метода измерения связывающей активности тестируемого антитела к CD137 с антигеном включают метод, основанный на взаимодействии экспрессирующих CD137 клеток с тестируемым антителом и последующем окрашивании меченным с помощью ФИТЦ вторичным антителом, которое распознает тестируемое антитело, и последующее получение данных измерений с использованием FACSCalibur (фирма BD), и анализа полученной интенсивности флуоресценции с использованием программы CELL QUEST (фирма BD).

Антитело

В контексте настоящего описания «антитело» относится к встречающемуся в естественных условиях иммуноглобулину или иммуноглобулину, полученному полностью или частично путем синтеза. Антитела можно выделять из встречающихся в естественных условиях источников, таких как встречающиеся в естественных условиях плазма и сыворотка, или из супернатантов культур продуцирующих антитела клеток гибридом. Альтернативно этому, антитела можно частично или полностью

синтезировать с использованием таких методик, как генетическая рекомбинация. Пригодными примерами антител являются, например, антитела, принадлежащие к какому-либо изотипу иммуноглобулинов или его подклассу. Известные человеческие иммуноглобулины включают антитела следующих девяти классов (изотипов): IgG1, IgG2, IgG3, IgG4, IgA1, IgA2, IgD, IgE и IgM. Из этих изотипов к антителам, предлагаемым в изобретении, относятся IgG1, IgG2, IgG3 и IgG4.

Методы получения антитела с требуемой активностью связывания известны специалистам в данной области, и антитела можно получать в виде поликлональных или моноклональных антител. В качестве антител, предлагаемых в настоящем изобретении, можно получать моноклональные антитела, происходящие из организма млекопитающих. Указанные происходящие из организма млекопитающих моноклональные антитела включают антитела, полученные с помощью гибридом, и антитела, полученные из клеток-хозяев, трансформированных экспрессионным вектором, который несет ген антитела, созданный с помощью методов генетической инженерии.

Отсутствует какое-либо конкретное ограничение, касающееся млекопитающих, подлежащих иммунизации с целью получения антител. Предпочтительно выбирать млекопитающих с учетом их совместимости с родительскими клетками, применяемыми для клеточного слияния для получения с помощью гибридом. В целом, предпочтительно применяют кроликов, обезьян и грызунов, таких как мыши, крысы и хомяки.

Вышеуказанных животных иммунизируют сенсибилизирующим антигеном с помощью известных методов. Общепринятым методом иммунизации является, например, введение млекопитающим сенсибилизирующего антигена путем внутрибрюшинной или подкожной инъекции. В частности, сенсибилизирующий антиген можно соответствующим образом разводить в ЗФР (забуференный фосфатом физиологический раствор), в физиологическом соляном растворе или т.п. При необходимости с антигеном смешивают общепринятый адъювант, такой как полный адъювант Фрейнда, и смесь эмульгируют. Затем сенсибилизирующий антиген вводят млекопитающему несколько раз с 4-21-дневными интервалами. При иммунизации сенсибилизирующим антигеном можно использовать соответствующие носители. В частности, когда в качестве сенсибилизирующего антигена используют низкомолекулярный неполный пептид, то иногда для иммунизации требуется сочетать пептид, представляющий собой сенсибилизирующий антиген, с белком-носителем, таким как альбумин или гемоцианин лимфы улитки.

Альтернативно этому, можно получать продуцирующие требуемое антитело гибридомы с помощью описанной ниже ДНК-иммунизации. ДНК-иммунизация представляет собой метод иммунизации, который обеспечивает иммуностимуляцию посредством экспрессии сенсибилизирующего антигена в организме иммунизированного животного в результате введения ДНК-вектора, сконструированного таким образом, чтобы он обеспечивал экспрессию гена, кодирующего антигенный белок, в организме животного. По сравнению с общепринятыми методами иммунизации, при которых животным, подлежащим иммунизации, вводят белковый антиген, ДНК-иммунизация, по-видимому, имеет следующие преимущества:

- можно осуществлять иммуностимуляцию, сохраняя при этом структуру мембранного белка; и
 - отсутствует необходимость в очистке антигена для иммунизации.

35

Для получения моноклонального антитела, предлагаемого в настоящем изобретении, с использованием ДНК-иммунизации сначала вводят животному, подлежащему

иммунизации, ДНК, экспрессирующую антигенный белок. ДНК, кодирующую антигенный белок, можно синтезировать с помощью известных методов, таких как ПЦР. Полученную ДНК встраивают в соответствующий экспрессионный вектор и затем его вводят животному, подлежащему иммунизации. Предпочтительно применяемые для этой цели экспрессионные векторы включают, например, поступающие в продажу экспрессионные векторы, такие как pcDNA3.1. Векторы можно вводить в организм с помощью общепринятых методов. Например, ДНК-иммунизацию осуществляют с использованием генной пушки для интродукции золотых частиц, покрытых экспрессионным вектором, в клетки тела животного, подлежащего иммунизации.

После описанной выше иммунизации млекопитающего у него подтверждают в сыворотке повышенный титр антигенсвязывающего антитела. После этого получают из организма млекопитающего иммунные клетки и затем используют их для клеточного слияния. В частности, в качестве иммунных клеток предпочтительно применяют спленоциты.

Клетку миеломы млекопитающих применяют в качестве клетки, подлежащей слиянию с вышеуказанными иммунными клетками. Клетки миеломы предпочтительно содержат приемлемый маркер селекции для скрининга. Маркер селекции придает клеткам характеристики, обеспечивающие их выживание (или гибель) в специфических условиях культивирования. В качестве маркера селекции известны дефицит гипоксантин-гуанинфосфорибозилтрансферазы (сокращенно обозначенный далее в контексте настоящего описания как дефицит НGPRT) и дефицит тимидинкиназы (сокращенно обозначенный далее в контексте настоящего описания как дефицит ТК). Клетки с дефицитом НGPRT или ТК обладают чувствительностью к гипоксантин-аминоптерин-тимидину (далее в контексте настоящего описания сокращенно обозначена как ГАТ-чувствительность). Клетки с ГАТ-чувствительностью не могут синтезировать ДНК в селекционной ГАТ-среде и в результате погибают. Однако, когда клетки сливают со здоровыми клетками, они могут продолжать синтез ДНК с использованием «реутилизационного» пути здоровых клеток, и в результате они могут расти даже в селекционной ГАТ-среде.

Клетки с HGPRT-дефицитом и ТК-дефицитом можно отбирать в среде, содержащей 6-тиогуанин, 8-азагуанин (далее в контексте настоящего описания сокращенно обозначенный как 8AG) или 5'-бромдезоксиуридин соответственно. Здоровые клетки уничтожаются, поскольку они включают эти пиримидиновые аналоги в их ДНК. При этом клетки с дефицитом этих ферментов могут выживать в селекционной среде, поскольку они не могут включать указанные пиримидиновые аналоги. Кроме того, к маркеру селекции относится устойчивость к G418, которая обеспечивается геном устойчивости к неомицину, придающим устойчивость к 2-дезоксистрептаминовым антибиотикам (аналоги гентамицина). Известны различные типы клеток миелом, которые можно применять для клеточного слияния.

30

40 Например, в качестве клеток миеломы предпочтительно можно применять следующие клетки:

```
P3(P3x63Ag8.653) (J. Immunol. 123 (4), 1979, cc. 1548-1550);
P3x63Ag8U.1 (Current Topics in Microbiology and Immunology 81, 1978, cc. 1-7);
NS-1 (C. Eur. J. Immunol. 6 (7), 1976, cc. 511-519);
MPC-11 (Cell 8 (3), 1976, cc. 405-415);
SP2/0 (Nature 276 (5685), 1978, cc. 269-270);
FO (J. Immunol. Methods 35 (1-2), 1980, cc. 1-21);
S194/5.XX0.BU.1 (J. Exp. Med. 148 (1), 1978, cc. 313-323);
```

R210 (Nature 277 (5692), 1979, сс. 131-133) и т.д.

5

Клеточное слияние иммуноцитов и клеток миеломы, как правило, осуществляют с помощью известных методов, например, метода, описанного у Kohler и Milstein и др. (Methods Enzymol. 73, 1981, сс. 3-46).

Более конкретно, клеточное слияние можно осуществлять, например, в общепринятой культуральной среде в присутствии усиливающего клеточное слияние агента. Усиливающие слияние агенты включают, например, полиэтиленгликоль (ПЭГ) и вирус Сендай (гемагглютинирующий японский вирус мышей) (HVJ). При необходимости для повышения эффективности слияния добавляют также вспомогательную субстанцию, такую как диметилсульфоксил.

Соотношение иммуноцитов и клеток миеломы можно определять по усмотрению исследователя, предпочтительно, например, одна клетка миеломы на каждые 1-10 иммуноцитов. Культуральные среды, применяемые для клеточных слияний, включают, например, среды, пригодные для выращивания клеточных линий миелом, такие как среда RPMI1640 и среда МЕМ, а также другая общепринятая культуральная среда, применяемая для данного типа клеточной культуры. Кроме того, в культуральную среду предпочтительно можно вносить добавки в виде сыворотки, такой как фетальная телячья сыворотка (FCS).

Для клеточного слияния указанные выше иммунных клетки и клетки миеломы, взятые в предварительно определенных количествах, хорошо перемешивают в указанной выше культуральной среде. Затем к ней добавляют предварительно нагретый до температуры примерно 37°C раствор ПЭГ (например, средняя молекулярная масса которого составляет примерно от 1000 до 6000) в концентрации, составляющей, как правило, от 30 до 60% (мас./об.). Смесь осторожно перемешивают до получения требуемых слитых клеток (гибридомы). Затем указанную выше культуральную среду постепенно добавляют к клеткам и повторно центрифугируют для удаления супернатанта. Таким путем можно удалять агенты для клеточного слияния, которые являются нежелательными для роста гибридом.

Полученные таким образом гибридомы можно отбирать путем культивирования, используя общепринятую селективную среду, например, ГАТ-среду (культуральная среда, содержащая гипоксантин, аминоптерин и тимидин). Культивирование в вышеуказанной ГАТ-среде продолжают в течение периода времени, достаточного для уничтожения клеток, отличных от требуемых гибридом (неслитые клетки). Как правило, период составляет от нескольких дней до нескольких недель. Затем осуществляют скрининг гибридом, продуцирующих требуемое антитело, и по отдельности клонируют с помощью общепринятых методов серийных разведений.

Полученные таким образом гибридромы можно отбирать, используя селекционную среду на основе маркера селекции, который несут клетки миеломы, применяемые для клеточного слияния. Например, клетки с HGPRT-или ТК-дефицитом можно отбирать путем культивирования с использованием ГАТ-среды (культуральная среда, содержащая гипоксантин, аминоптерин и тимидин). В частности, когда для клеточного слияния используют чувствительные к ГАТ клетки миеломы, то клетки, для которых характерно успешное слияние со здоровыми клетками, могут избирательно размножаться в ГАТ-среде. Культивирование в вышеуказанной ГАТ-среде продолжают в течение периода времени, достаточного для уничтожения клеток, отличных от требуемых гибридом (неслитые клетки). В частности, требуемые гибридомы можно отбирать путем культивирования, как правило, в течение периода времени, составляющего от нескольких дней до нескольких недель. Затем осуществляют скрининг гибридом, продуцирующих

требуемое антитело, и по отдельности клонируют с помощью общепринятых методов серийных разведений.

Требуемые антитела предпочтительно можно отбирать и по отдельности клонировать с помощью методов скрининга, основанных на известной реакции антиген/антитело.

Например, можно осуществлять скрининг указанных моноклональных антител с помощью метода разделения клеток на основе возбуждения флуоресценции (FACS). FACS представляет собой систему, которая позволяет оценивать связывание антитела с клеточной поверхностью посредством анализа клеток, контактирующих с флуоресцентным антителом, с использованием лазерного пучка, и путем оценки флуоресценции, испускаемой индивидуальными клетками.

Для скрининга с использованием FACS в отношении гибридом, которые продуцируют моноклональное антитело, предлагаемое в настоящем изобретении, прежде всего, получают клетки, которые экспрессируют антиген, связанный с продуцируемым антителом. Клетки, которые предпочтительно используют для скрининга, представляют собой клетки млекопитающих, в которых происходит принудительная экспрессия антигена. В качестве контроля можно избирательно определять с использованием нетрансформированных клеток млекопитающих в качестве клеток-хозяев способность антитела связываться с расположенным на клеточной поверхности антигеном. В частности, гибридомы, продуцирующие моноклональное антитело, можно выделять путем отбора гибридом, которые продуцируют антитело, связывающееся с клетками, принудительно экспрессирующими антиген, но не с клетками-хозяевами.

Альтернативно этому, клетки, экспрессирующие представляющий интерес антиген, иммобилизуют, и способность антитела связываться с экспрессирующими антиген клетками можно оценивать на основе принципа ELISA. Например, экспрессирующие антиген клетки иммобилизуют на лунках планшета для ELISA. Супернатанты культур гибридом приводят в контакт с иммобилизованными клетками в лунках и выявляют антитела, которые связываются с иммобилизованными клетками. Когда моноклональные антитела имеют мышиное происхождение, то антитела, связанные с клетками, можно выявлять с помощью антитела к мышиному иммуноглобулину.

Гибридомы, продуцирующие требуемое антитело, которое обладает антигенсвязывающей способностью, отбирают путем описанного выше скрининга, и их можно клонировать методом серийных разведений или сходным методом, или т.п.

Полученные таким путем гибридомы, продуцирующие моноклональные антитела, можно пересевать в общепринятую культуральную среду и хранить в жидком азоте в течение длительного периода времени.

Указанные выше гибридомы культивируют с помощью общепринятого метода и требуемые моноклональные антитела можно получать из супернатантов культур. Альтернативно этому, гибридомы интродуцируют и выращивают в пригодных для этой цели млекопитающих и моноклональные антитела можно получать из асцитов. Первый метод пригоден для получения антител с высокой степенью чистоты.

Предпочтительно можно применять также антитела, кодируемые генами антител, которые клонированы из продуцирующих антитела клеток, таких как указанные выше гибридомы. Клонированный ген антитела встраивают в соответствующий вектор и его интродуцируют в хозяина для экспрессии кодируемого геном антитела. Методы выделения генов антител, встраивания генов в векторы и трансформации клеток-хозяев разработаны ранее (см., например, Vandamme и др., Eur. J. Biochem. 192(3), 1990, сс. 767-775). Методы получения рекомбинантных антител также известны и описаны ниже.

Как правило, для получения кДНК, кодирующей вариабельную область (V-область)

антитела, сначала общую РНК экстрагируют из гибридом. Например, следующие методы можно применять для экстракции мРНК из клеток:

- метод ультрацентрифугирования в присутствии гуанидина (Biochemistry 18(24), 1979, сс. 5294-5299) и
- AGPC (метод выделения РНК путем гуанидинтиоцинат-фенол-хлороформной экстракции) (Anal. Biochem. 162(1), 1987, сс. 156-159).

5

Экстрагированные мРНК можно очищать с помощью набора для очистки мРНК (фирма GE Healthcare Bioscience) или аналогичного набора. В качестве альтернативы можно применять также поступающие в продажу наборы для экстракции мРНК непосредственно из клеток, такие как набор для очистки мРНК QuickPrep (фирма GE Healthcare Bioscience). мРНК можно получать из гибридом с использованием таких наборов. Кодирующие V-область антитела кДНК можно синтезировать из полученных мРНК с помощью обратной транскриптазы. кДНК можно синтезировать с помощью набора для синтеза первой цепи кДНК, содержащего обратную транскриптазу AMV (Reverse Transcriptase First-strand cDNA Synthesis Kit) (фирма Seikagaku Co.) или аналогичного набора. Кроме того, для синтеза и амплификации кДНК можно применять набор для амплификации кДНК SMART RACE (фирма Clontech) и метод, основанный на ПЦР 5'-RACE (быстрая амплификация концов кДНК) (Proc. Natl. Acad. Sci. USA 85 (23), 1988, сс. 8998-9002; Nucleic Acids Res. 17(8), 1989, сс. 2919-2932). При таком процессе синтеза кДНК соответствующие описанные ниже сайты, распознаваемые рестриктазами, можно интродуцировать на оба конца кДНК.

Представляющий интерес фрагмент кДНК очищают из полученного ПЦР-продукта и затем его встраивают путем лигирования в ДНК-вектор. Таким путем создают рекомбинантный вектор и интродуцируют в E.coli или подобного хозяина. После селекции колоний требуемый рекомбинантный вектор можно получать из колониеобразующих E.coli. Затем с использованием известного метода, такого как метод терминации нуклеотидной цепи (дидезокси-метод), определяют, имеет ли рекомбинантный вектор представляющую интерес нуклеотидную последовательность кДНК.

5'-RACE-метод, в котором используют праймеры для амплификации гена вариабельной области, как правило, применяют для выделения гена, кодирующего вариабельную область. Сначала конструируют библиотеку кДНК, применяемую для 5'-RACE (5'-RACE-библиотека кДНК) с использованием РНК, экстрагированных из клеток гибридомы, в качестве матрицы. Для синтеза 5'-RACE-библиотеки кДНК можно использовать поступающий в продажу набор, такой как набор для амплификации кДНК SMART RACE.

Ген антитела амплифицируют с помощью ПЦР, используя полученную 5'-RACE-библиотеку кДНК в качестве матрицы. Праймеры для амплификации гена мышиного антитела можно создавать на основе известных генных последовательностей антител. Нуклеотидные последовательности праймеров варьируются в зависимости от подкласса иммуноглобулина. Таким образом, предпочтительно предварительно определять подкласс с помощью доступного набора, такого как набор для изотипирования мышиных моноклональных антител Iso Strip (Iso Strip mouse monoclonal antibody isotyping kit) (фирма Roche Diagnostics).

В частности, например, для выделения генов, кодирующих мышиный IgG, применяют праймеры, которые обеспечивают амплификацию генов, кодирующих тяжелые цепи $\gamma 1$, $\gamma 2a$, $\gamma 2b$ и $\gamma 3$ и легкие цепи к и λ . В целом, праймер, сайт гибридизации («отжига») которого с константной областью расположен вблизи вариабельной области, применяют

в качестве 3'-концевого праймера для амплификации гена вариабельной области IgG. При этом праймер, присоединенный к набору конструкций 5' RACE-библиотеки кДНК, применяют в качестве 5'-концевого праймера.

Амплифицированные таким образом ПЦР-продукты применяют для реконструирования иммуноглобулинов, состоящих из комбинации тяжелых и легких цепей. Требуемое антитело можно отбирать, используя в качестве показателя антигенсвязывающую активность реконструированного иммуноглобулина. Можно осуществлять скрининг, например, с использованием следующих стадий, на которых:

- (1) приводят в контакт экспрессирующую требуемый антиген клетку с антителом, содержащим V-область, которая кодируется кДНК, выделенной из гибридомы;
 - (2) определяют связывание антитела с экспрессирующей антиген клеткой; и
 - (3) отбирают антитело, которое связывается с экспрессирующей антиген клеткой.

Методы определения связывания антитела с экспрессирующими антиген клетками, являются известными. В частности, связывание антитела с экспрессирующими антиген клетками можно определять с помощью описанных выше методик, таких как FACS. Иммобилизованные образцы экспрессирующих антиген клеток можно применять для оценки связывающей активности антитела.

Предпочтительные методы скрининга антител, в которых используют связывающую активность в качестве показателя, включают также методы пэннинга, основанные на использовании фаговых векторов. Методы скрининга с использованием фаговых векторов имеют преимущество, когда гены антитела выделяют из библиотек подкласса тяжелой цепи и легкой цепи из популяции клеток, экспрессирующих поликлональные антитела. Гены, кодирующие вариабельные области тяжелой цепи и легкой цепи, можно сшивать с помощью приемлемой линкерной последовательности с образованием одноцепочечного Fv (scFv). Фаги, экспрессирующие на своей поверхности scFv, можно получать путем встраивания гена, кодирующего scFv, в фаговый вектор. Фаги приводят в контакт с представляющим интерес антигеном. Затем ДНК, кодирующую scFv, который обладает представляющей интерес связывающей активностью, можно выделять путем сбора фагов, связанных с антигеном. Указанный процесс можно повторять при необходимости для обогащения scFv, которые обладают представляющей интерес связывающей активностью.

После выделения кДНК, кодирующей V-область представляющего интерес антитела, кДНК расщепляют рестриктазами, которые распознают сайты рестрикции, интродуцированные в оба конца кДНК. Предпочтительные рестриктазы распознают и расщепляют нуклеотидную последовательность, которая встречается с низкой частотой в нуклеотидной последовательности гена антитела. Кроме того, для встраивания однокопийного расщепленного фрагмента в правильной ориентации предпочтительно интродуцируют в представляющий интерес вектор сайт рестрикции для фермента, который образует «липкий» конец. Кодирующую V-область антитела кДНК расщепляют согласно описанному выше методу и встраивают в приемлемый экспрессионный вектор для создания экспрессионного вектора антитела. В том случае, когда ген, кодирующий константную область (С-область) антитела, и ген, кодирующий указанную выше V-область, сливают в рамке считывания, то получают химерное антитело. В контексте настоящего описания «химерное антитело» означает, что константная область и вариабельная область отличаются по своему происхождению. Так, помимо мышиных/человеческих гетерохимерных антител к химерным антителам, предлагаемым в настоящем изобретении, относятся также человеческие/человеческие аллохимерные антитела. Экспрессионный вектор химерного антитела можно создавать путем встраивания указанного выше гена V-области в экспрессионный вектор, который уже содержит константную область. В частности, например, последовательность, распознаваемую рестриктазой, которая вырезает указанный выше ген V-области, предпочтительно следует помещать в 5'-область экспрессионного вектора, несущего ДНК, которая кодирует константную область (С-область) требуемого антитела. Экспрессионный вектор химерного антитела создают путем слияния в рамке считывания двух генов, расщепленных одной и той же комбинацией рестриктаз.

Для получения моноклонального антитела гены антитела встраивают в экспрессионный вектор таким образом, чтобы экспрессия генов происходила под контролем регулирующей экспрессию области. Регулирующая экспрессию область, предназначенная для экспрессии антител, включают, например, энхансеры и промоторы. Кроме того, соответствующую сигнальную последовательность можно присоединять к аминоконцу таким образом, чтобы экспрессируемое антитело секретировалось из клеток наружу. Сигнальная последовательность отщепляется от карбоксильного конца экспрессируемого полипептида, и образовавшееся антитело может секретироваться из клеток наружу. Затем приемлемые клетки-хозяева трансформируют экспрессионным вектором и таким образом можно получать рекомбинантные клетки, экспрессирующие ДНК, которая кодирует антитело.

ДНК, которые кодируют тяжелую цепь антитела (Н-цепь) и легкую цепь антитела (L-цепь), встраивают по отдельности в различные экспрессионные векторы для экспрессии гена антитела. Молекулу антитела, имеющую Н- и L-цепи, можно экспрессировать, осуществляя для этой цели контрансфекцию одной и той же клетки-хозяина векторами, в которые встроены соответственно гены Н-цепи и L-цепи. В качестве альтернативы, клетки-хозяева можно трансформировать одним экспрессионным вектором, в который встроены ДНК, кодирующие Н- и L-цепи (см. WO 94/11523).

Известны различные комбинации клеток-хозяев/экспрессионных векторов для получения антитела путем интродукции выделенных генов антител в соответствующих хозяев. Все эти системы экспрессии можно применять для выделения доменов, связывающихся со специфическими для рака антигенами, предлагаемых в настоящем изобретении, доменов, связывающихся с представителями суперсемейства рецептора фактора некроза опухоли (TNFRSF) и комплексом Т-клеточного рецептора.

Приемлемыми эукариотическими клетками, которые применяют в качестве клетокхозяев, являются клетки животных, клетки растений и клетки грибов. В частности, клетки животных представляют собой, например, следующие клетки:

- (1) клетки млекопитающих: CHO, COS, миеломы, почки детеныша хомяка (ВНК), HeLa, Vero или т.п.;
 - (2) клетки амфибий: ооциты шпорцевой лягушки (Xenopus) или т.п. и
 - (3) клетки насекомых: sf9, sf21, Tn5 или т.п.

35

Кроме того, в качестве растительной клетки известна система экспрессии генов антитела, в которой используют клетки, полученные из представителей рода Nicotiana, например, Nicotiana tabacum. Для трансформации растительных клеток можно применять культивированные клетки каллюса.

Кроме того, следующие клетки можно применять в качестве грибных клеток: дрожжи: рода Saccharomyces, например, Saccharomyces cerevisiae, и рода Pichia, например, Pichia pastoris, и

нитчатые грибы: рода Aspergillus, например, Aspergillus niger.

Кроме того, известны системы экспрессии генов антитела, в которых используют прокариотические клетки. Например, согласно настоящему изобретению можно

применять бактериальные клетки, т.е. клетки E.coli, клетки Bacillus subtilis и т.п. Экспрессионные векторы, которые несут представляющие интерес гены антитела, интродуцируют в эти клетки путем трансфекции. Трансфектированные клетки культивируют in vitro, и требуемое антитело можно получать из культуры трансформированных клеток.

Помимо указанных выше клеток-хозяев для получения рекомбинантного антитела можно применять также трансгенных животных. Это означает, что антитело можно получать из животного, в организм которого интродуцирован ген, кодирующий представляющее интерес антитело. Например, ген антитела можно создавать в виде слитого гена посредством встраивания в рамке считывания в ген, кодирующий белок, который специфически образуется в молоке. В качестве белка, секретируемого в молоко, можно применять, например, козий β-казеин. ДНК-фрагменты, содержащие слитый ген, в который входит ген антитела, инъецируют в эмбрион козы и затем этот эмбрион интродуцируют в самку козы. Требуемые антитела можно получать в виде белка, слитого с молочным белком из молока трансгенной козы, родившейся от козы, являющейся реципиентом эмбриона (или ее потомства). Кроме того, для увеличения объема молока, содержащего требуемое антитело, которое продуцируется трансгенной козой, трансгенной козе можно при необходимости вводить гормоны (Віо/Тесhnologу 12 (7), 1994, сс. 699-702).

20 Когда антигенсвязывающую молекулу, представленную в настоящем описании, вводят человеку, то в качестве различных связывающих доменов в молекуле можно применять антигенсвязывающий домен, происходящий из антитела, полученного путем генетической рекомбинации, которое искусственно модифицировано для снижения гетерологичной антигенности в отношении человека и других животных, когда применяют домены, содержащие вариабельную область антитела. Указанные антитела, полученные путем генетической рекомбинации, включают, например, гуманизированные антитела. Эти модифицированные антитела можно получать с помощью известных методов.

Вариабельная область антитела, применяемая для получения различных связывающих доменов, представленных в настоящем описании, как правило, состоит из трех гипервариабельных участков (CDR), разделенных четырьмя каркасными участками (FR). CDR представляет собой область, которая в значительной степени определяет специфичность связывания антитела. Для аминокислотных последовательностей CDR характерна высокая степень вариабельности. С другой стороны, образующие FR аминокислотные последовательности часто обладают высокой идентичностью даже среди антител с различными специфичностями связывания. Таким образом, как правило, путем трансплантации CDR специфичность связывания конкретного антитела можно интродуцировать в другое антитело.

Гуманизированное антитело называют также реконструированным человеческим антителом. В частности, известны гуманизированные антитела, полученные путем трансплантации CDR антитела животного кроме человека, такого как мышиное антитело, в человеческое антитело и т.п. Известны также общепринятые методики генной инженерии, предназначенные для получения гуманизированных антител. В частности, например, ПЦР с перекрывающимися праймерами представляет собой известный метод трансплантации CDR мышиного антитела в человеческий FR. При осуществлении ПЦР с перекрывающимися праймерами нуклеотидную последовательность, которая кодирует CDR мышиного антитела, подлежащий трансплантации, добавляют к праймерам, предназначенным для синтеза FR

человеческого антитела. Получают праймеры для каждого из четырех FR. Принято считать, что когда осуществляют трансплантацию мышиного CDR в человеческий FR, то для поддержания функции CDR целесообразно выбирать человеческий FR, обладающий высоким уровнем идентичности с мышиным FR. Таким образом, как правило, является предпочтительным применять человеческий FR, который содержит аминокислотную последовательность, обладающую высоким уровнем идентичности с аминокислотной последовательностью FR, который примыкает к подлежащему трансплантации мышиному CDR.

Нуклеотидные последовательности, подлежащие лигированию, создают таким образом, чтобы они были соединены друг с другом в рамке считывания. Человеческие FR синтезируют индивидуально с использованием соответствующих праймеров. В результате получают продукты, в которых ДНК, кодирующая мышиный CDR, присоединена к индивидуальным ДНК, кодирующим FR. Нуклеотидные последовательности, кодирующие мышиный CDR каждого продукта, создают таким образом, чтобы они перекрывались друг с другом. Затем осуществляют реакцию синтеза комплементарной цепи для «отжига» перекрывающихся CDR-участков продуктов, синтезированных с использованием гена человеческого антитела в качестве матрицы. С помощью этой реакции человеческие FR встраивают путем лигирования через мышиные CDR-последовательности.

Полноразмерный ген V-области, в которую, в конце концов, лигированы три CDR и четыре FR, амплифицируют с использованием праймеров, гибридизующихся с 5'- или 3'-концом, которые добавляют с последовательностями, распознаваемыми приемлемыми рестриктазами. Экспрессионный вектор для гуманизированного антитела можно получать путем встраивания полученной согласно описанному выше методу ДНК и
 ДНК, которая кодирует С-область человеческого антитела, в экспрессионный вектор таким образом, чтобы лигировать их в рамке считывания. После трансфекции хозяина рекомбинантным вектором для создания рекомбинантных клеток рекомбинантные клетки культивируют и ДНК, кодирующую гуманизированное антитело, экспрессируют с получением гуманизированного антитела в культуре клеток (см. публикацию европейского патента EP 239400 и публикацию международной заявки на патент WO 1996/002576).

Путем качественной или количественной оценки и измерения антигенсвязывающей активности гуманизированного антитела, полученного согласно описанному выше методу, можно отбирать FR человеческого антитела, которые позволяют CDR образовывать предпочтительный антигенсвязывающий центр при лигировании посредством CDR. Аминокислотные остатки в FR при необходимости можно заменять так, чтобы CDR реконструированного человеческого антитела образовывали приемлемый антигенсвязывающий центр. Например, мутации аминокислотной последовательности можно интродуцировать в FR, используя ПЦР-метод, применяемый для трансплантации мышиного CDR в человеческий FR. Более конкретно, мутации неполной нуклеотидной последовательности можно интродуцировать в праймеры, гибридизующиеся с FR. Мутации нуклеотидной последовательности интродуцируют в FR, синтезированные с использованием указанных праймеров. Мутантные последовательности FR, имеющие требуемые характеристики, можно отбирать путем измерения и оценки активности мутантного антитела с аминокислотной заменой в отношении связывания с антигеном с помощью упомянутого выше метода (Sato K. и др., Cancer Res. 53, 1993, сс. 851-856).

В качестве альтернативы, требуемые человеческие антитела можно получать путем

иммунизации трансгенных животных, имеющих полный спектр генов человеческого антитела (см. WO 1993/012227; WO 1992/003918; WO 1994/002602; WO 1994/025585; WO 1996/034096; WO 1996/033735), с использованием ДНК-иммунизации.

Кроме того, известны методики получения человеческих антител путем пэннинга с использованием библиотек человеческих антител. Например, V-область человеческого антитела экспрессируют в виде одноцепочечного антитела (scFv) на поверхности фага с использованием метода фагового дисплея. Можно отбирать фаги, экспрессирующие scFv, который связывается с антигеном. Последовательность ДНК, кодирующую V-область человеческого антитела, которая связывается с антигеном, можно определять путем анализа генов отобранных фагов. Определяют последовательность ДНК scFv, который связывается с антигеном. Экспрессионный вектор получают путем слияния последовательности V-области в рамке считывания с последовательностью C-области требуемого человеческого антитела и последующего встраивания в приемлемый экспрессионный вектор. Экспрессионный вектор интродуцируют в клетку, пригодную для указанной выше экспрессии. Человеческое антитело можно получать путем экспрессии гена, кодирующего человеческое антитело, в клетках. Такие методы уже описаны (см. WO 1992/001047; WO 1992/020791; WO 1993/006213; WO 1993/011236; WO 1993/019172; WO 1995/001438; WO 1995/015388).

Помимо метода фагового дисплея методики, в которых используют бесклеточную систему трансляции, методики дисплея антигенсвязывающих молекул на поверхности вирусов или клеток и методики, в которых используют эмульсии, также известны в качестве методик, предназначенных для получения человеческих антител путем пэннинга с использованием библиотек человеческих антител. Например, метод рибосомного дисплея, при осуществлении которого формируют комплекс между транслируемым белком и мРНК посредством рибосомы путем удаления стоп-кодона и т.п. метод кДНКдисплея или метод мРНК-дисплея, при осуществлении которых генную последовательность и транслируемый белок ковалентно связывают с использованием такого соединения, как пуромиин, метод CIS-дисплея, при осуществлении которого формируют комплекс между геном и транслируемым белком с использованием связывающего нуклеиновую кислоту белка, или т.п., можно применять в качестве методик для бесклеточной системы трансляции. В методике презентации антигенсвязывающих молекул на поверхности клеток или вирусов помимо метода фагового дисплея можно применять метод дисплея на E.coli, метод дисплея на грамотрицательных бактериях, метод дрожжевого дисплея, метод дисплея на клетках млекопитающих, метод вирусного дисплея и т.п. В качестве методики, в которой применяют эмульсии, можно использовать метод вирусного дисплея in vitro, который заключается в том, что вносят гены и связанные с трансляцией молекулы в эмульсию и т.п. Эти методы уже известны научной общественности (Nat Biotechnol. 18(12), декабрь 2000 Γ., cc. 1287-1292; Nucleic Acids Res. 34(19), 2006, e127; Proc Natl Acad Sci USA. 101(9), 2 марта 2004 г., сс. 2806-2810; Proc Natl Acad Sci USA. 101(25), 22 июня 2004 г., сс. 9193-9198; Protein Eng Des Sel. 21(4), апреля 2008 г., сс. 247-255; Proc Natl Acad Sci USA. 97(20), 26 сентября 2000 г., сс. 10701-10705; MAbs. 2(5), сентябрь-октябрь 2010 г., сс. 508-518 и Methods Mol Biol. 911, 2012, cc. 183-198).

В настоящем изобретении «специфическое» означает состояние, при котором одна из молекул, участвующих в специфическом связывании, не обладает никаким специфическим связыванием с молекулами, отличными от одной или нескольких молекул, являющихся партнерами по связыванию Кроме того, понятие «специфический» используют также тогда, когда антигенсвязывающий домен является специфическим

в отношении конкретного эпитопа из нескольких эпитопов, входящих в антиген. Когда эпитоп, с которым связывается антигенсвязывающий домен, входит в несколько различных антигенов, то антигенсвязывающая молекула, содержащая антигенсвязывающий домен, может связываться с различными антигенами, которые содержат эпитоп.

«Эпитоп» означает антигенную детерминанту в антигене и относится к антигенному сайту, с которым связывается антигенсвязывающая молекула, представленная в настоящем описании. Так, например, эпитоп можно характеризовать на основе его структуры. Альтернативному этому, эпитоп можно характеризовать на основе антигенсвязывающей активности антигенсвязывающей молекулы, которая распознает эпитоп. Когда антиген представляет собой пептид или полипептид, то эпитоп можно определять по аминокислотным остаткам, образующим эпитоп. Альтернативно этому, когда эпитоп представляет собой сахарную цепь, то эпитоп можно определять по специфической для него структуре сахарной цепи.

Линейный эпитоп представляет собой эпитоп, который содержит эпитоп, у которого распознается первичная аминокислотная последовательность. Указанный линейный эпитоп, как правило, содержит по меньшей мере три и наиболее часто по меньшей мере пять, например, примерно от 8 до 10 или от 6 до 20 аминокислот в определенной последовательности.

20

40

В отличие от линейного эпитопа «конформационный эпитоп» представляет собой эпитоп, в котором первичная аминокислотная последовательность, составляющая эпитоп, не является единственной детерминантой распознаваемого эпитопа (например, не является обязательным, чтобы первичная аминокислотная последовательность конформационного эпитопа распознавалась специфическим в отношении эпитопа антителом). Конформационные эпитопы могут содержать большее количество аминокислотных остатков по сравнению с линейными эпитопами. Распознающее конформационный эпитоп антитело распознает трехмерную структуру пептида или белка. Например, когда белковая молекула уложена и образует трехмерную структуру, аминокислоты и/или полипептидные основные цепи, которые образуют конформационный эпитоп, выравниваются, и эпитоп становится распознаваемым для антитела. Методы определения конформаций эпитопов включают (но не ограничиваясь только ими), например, рентгеновскую кристаллографию, двухмерную ядерную

только ими), например, рентгеновскую кристаллографию, двухмерную ядерную магнитно-резонансную спектроскопию, сайтспецифическое спиновое мечение и электронную парамагнитно-резонансную спектроскопию (см., например, Epitope Mapping Protocols in Methods in Molecular Biology, под ред. Morris, т. 66, 1996).

Примеры методов оценки связывания эпитопа в специфическом для рака антигене тестируемой антигенсвязывающей молекулой, описаны ниже. Можно применять также описанные ниже в качестве примеров методы оценки связывания эпитопа в антигенемишени другим связывающим доменом.

Например, для подтверждения того, что тестируемая антигенсвязывающая молекула, которая содержит антигенсвязывающий домен для специфического для рака антигена, распознает линейный эпитоп в молекуле антигена, можно применять описанный ниже метод. Например, для указанной выше цели синтезируют линейный пептид, содержащий аминокислотную последовательность, образующую внеклеточный домен специфического для рака антигена. Пептид можно синтезировать химически или

получать с помощью методов генной инженерии, используя область в кДНК специфического для рака антигена, которая кодирует аминокислотную последовательность, соответствующую внеклеточному домену. Затем тестируемую

антигенсвязывающую молекулу, содержащую антигенсвязывающий домен для специфического для рака антигена, оценивают в отношении ее активности связывания с линейным пептидом, который содержит аминокислотную последовательность, образующую внеклеточный домен. Например, иммобилизованный линейный пептид можно применять в качестве антигена при осуществлении ELISA для оценки активности в отношении связывания антигенсвязывающей молекулы с пептидом. Альтернативно этому, активность связывания с линейным пептидом можно оценивать по уровню ингибирования линейным пептидом связывания антигенсвязывающей молекулы с клетками, экспрессирующими специфический для рака антиген. Эти анализы могут демонстрировать активность связывания антигенсвязывающей молекулы с линейным пептидом.

Для подтверждения того, что указанная выше антигенсвязывающая молекула, которая содержит антигенсвязывающий домен для антигена, распознает конформационный эпитоп, можно применять описанный ниже метод. Например, считается, что антигенсвязывающая молекула, которая содержит антигенсвязывающий домен для специфического для рака антигена, распознает конформационный эпитоп, если она при контакте отличается сильным связыванием с клетками, экспрессирующими специфический для рака антиген, но незначительно связывается с иммобилизованным линейным пептидом, который содержит аминокислотную последовательность, образующую внеклеточный домен специфического для рака антигена. В контексте настоящего описания «незначительно связывается» означает, что активность связывания составляет 80% или менее, как правило, 50% или менее, предпочтительно 30% или менее и наиболее предпочтительно 15% или менее по сравнению с активностью связывания с клетками, экспрессирующими антиген.

Методы оценки активности связывания тестируемой антигенсвязывающей молекулы, которая содержит антигенсвязывающий домен, с экспрессирующими антиген клетками включают, например, методы, описанные в: Antibodies: A Laboratory Manual (под ред. Harlow, David Lane, изд-во Cold Spring Harbor Laboratory, 1988, сс. 359-420). В частности, оценку можно осуществлять на основе принципа ELISA или метода разделения клеток на основе возбуждения флуоресценции (FACS) с использованием в качестве антигена экспрессирующие антиген клетки.

25

клетками.

В формате ELISA активность связывания тестируемой антигенсвязывающей молекулы, которая содержит антигенсвязывающий домен, с экспрессирующими антиген клетками можно оценивать количественно путем сравнения уровней сигналов, возникающих в процессе ферментативной реакции. В частности, тестируемую антигенсвязывающую молекулу добавляют в планшет для ELISA, на котором иммобилизованы экспрессирующие антиген клетки. Затем тестируемую антигенсвязывающую молекулу, связанную с клетками, выявляют с помощью меченного ферментом антитела, которое распознает тестируемую антигенсвязывающую молекулу. Альтернативно этому, когда применяют FACS, приготавливают серийные разведения тестируемой антигенсвязывающей молекулы и титр антитела, связывающегося с экспрессирующими антиген клетками, можно определять путем сравнения активности связывания тестируемой антигенсвязывающей молекулы с экспрессирующими антиген

Связывание тестируемой антигенсвязывающей молекулы с антигеном, который экспрессируется на поверхности клеток, суспендированных в буфере или в сходной среде, можно выявлять с помощью проточного цитометра. Известными проточными цитометрами являются, например, следующие устройства:

FACSCantoTM II,

FACSAriaTM,

FACSArrayTM,

FACSVantageTM SE

5 FACSCaliburTM (все товарные знаки принадлежат фирме BD Biosciences),

EPICS ALTRA HyPerSort,

Cytomics FC 500,

EPICS XL-MCL ADC EPICS XL ADC,

Cell Lab Quanta/Cell Lab Quanta SC (все товарные знаки принадлежат фирме Beckman Coulter).

Приемлемыми методами оценки активности связывания указанной выше тестируемой антигенсвязывающей молекулы, которая содержит антигенсвязывающий домен, с антигеном является, например, следующий метод. Сначала экспрессирующие антиген клетки подвергают взаимодействию с тестируемой антигенсвязывающей молекулой, а затем осуществляют окрашивание меченным с помощью ФИТЦ вторичным антителом, которое распознает антигенсвязывающую молекулу. Тестируемую антигенсвязывающую молекулу соответствующим образом разводят приемлемым буфером с получением антигенсвязывающей молекулы в требуемой концентрации. Например, молекулу можно применять в концентрации, составляющей от 10 мкг/мл до 10 нг/мл. Затем определяют интенсивность флуоресценции и количество клеток с помощью FACSCalibur (фирма BD). Интенсивность флуоресценции, определенная с помощью анализов на основе программы CELL QUEST (фирма BD), а именно, выраженная в виде средних геометрических значений, отражает уровень связывания антитела с клетками. Это означает, что активность связывания тестируемой антигенсвязывающей молекулы, которая характеризуется количеством связанной тестируемой антигенсвязывающей молекулы, можно оценивать, определяя среднее геометрическое значение.

Имеет ли тестируемая антигенсвязывающая молекула, которая содержит антигенсвязывающий домен, предлагаемый в настоящем изобретении, общий эпитоп с другой антигенсвязывающей молекулой, можно оценивать по конкуренции между двумя молекулами за один и тот же эпитоп. Конкуренцию между антигенсвязывающими молекулами можно определять путем анализа перекрестной блокады или с помощью сходного анализа. Например, предпочтительным анализом перекрестной блокады является конкурентный ELISA-анализ.

В частности, при осуществлении анализа перекрестной блокады антиген, иммобилизованный в лунках титрационного микропланшета, предварительно инкубируют в присутствии антигенсвязывающей молекулы, рассматриваемой в качестве конкурента-кандидата, или без нее, а затем вносят тестируемую антигенсвязывающую молекулу. Количество связанной с антигеном тестируемой антигенсвязывающей молекулы в лунках косвенно коррелирует с активностью связывания антигенсвязывающей молекулы, рассматриваемой в качестве конкурента-кандидата, которая конкурирует за связывание с тем же эпитопом. Это означает, что чем выше аффинность антигенсвязывающей молекулы, рассматриваемой в качестве конкурента-кандидата, к тому же эпитопу, тем ниже активность связывания тестируемой антигенсвязывающей молекулы с сенсибилизированными антигеном лунками.

Количество тестируемой антигенсвязывающей молекулы, связанной через антиген с лунками, легко определять путем предварительного мечения антигенсвязывающей молекулы. Например, меченную биотином антигенсвязывающую молекулу оценивают с использованием конъюгата авидин/пероксидаза и соответствующего субстрата. В

частности, анализ перекрестной блокады, в котором применяют в качестве меток ферменты, такие как пероксидаза, называют «ELISA-анализом в конкурентных условиях (конкурентный анализ)». Антигенсвязывающую молекулу можно метить также с помощью других предназначенных для мечения субстанций, которые можно выявлять или оценивать. В частности, известны радиоактивные метки, флуоресцентные метки и т.п.

Когда антигенсвязывающая молекула, рассматриваемая в качестве конкурентакандидата, может блокировать связывание тестируемой антигенсвязывающей молекулы, которая содержит антигенсвязывающий домен, по меньшей мере на 20%, предпочтительно по меньшей мере на 20-50% и предпочтительно по меньшей мере на 50% по сравнению с активностью связывания, установленной в контрольном эксперименте, который проводят в отсутствии антигенсвязывающей молекулы, рассматриваемой в качестве конкурента-кандидата, то считается, что для тестируемой антигенсвязывающей молекулы характерна выраженная способность к связыванию с тем же эпитопом, с которым связывается антигенсвязывающая молекула, рассматриваемая в качестве конкурента-кандидата, или она конкурирует за связывание с тем же самым эпитопом.

Если структура эпитопа, связанного с тестируемой антигенсвязывающей молекулой, которая содержит антигенсвязывающий домен, предлагаемый в настоящем изобретении, уже идентифицирована, то для решения вопроса о том, имеют ли тестируемая и контрольная антигенсвязывающие молекулы общий эпитоп, можно сравнивать активности связывания двух антигенсвязывающих молекул с пептидом, полученным путем интродукции аминокислотных мутаций в пептид, образующий эпитоп.

Для оценки указанных выше активностей связывания, например, сравнивают активности связывания тестируемой и контрольной антигенсвязывающих молекул с линейным пептидом, в который интродуцирована мутация, с помощью указанного выше формата ELISA. Помимо метода ELISA активность связывания в отношении мутантного пептида, связанного с колонкой, можно определять, пропуская через колонку тестируемую и контрольную антигенсвязывающие молекулы и затем оценивая количество антигенсвязывающей молекулы, элюированной в раствор для элюции. Известны методы адсорбции мутантного пептида на колонке, например, в форме слитого с GST пептида.

Альтернативно этому, когда идентифицированный эпитоп представляет собой конформационный эпитоп, то для решения вопроса о том, имеют ли тестируемая и контрольная антигенсвязывающие молекулы общий эпитоп, можно применять следующий метод. Сначала получают клетки, экспрессирующие антиген, являющийся мишенью для антигенсвязывающей молекулы, и клетки, экспрессирующие антиген с мутацией, интродуцированной в эпитоп. Тестируемую и контрольную антигенсвязывающие молекулы добавляют в клеточную суспензию, полученную путем суспендирования этих клеток в приемлемом буфере, таком как ЗФР. Затем клеточные суспензии соответствующим образом промывают буфером и добавляют меченное с помощью ФИТЦ антитело, которое распознает тестируемую и контрольную антигенсвязывающие молекулы. Определяют интенсивность флуоресценции и количество клеток, окрашенных меченым антителом, используя FACSCalibur (фирма BD).

45 Тестируемую и контрольную антигенсвязывающие молекулы соответствующим образом разводят приемлемым буфером и применяют в требуемых концентрациях. Например, их можно применять в концентрации от 10 мкг/мл до 10 нг/мл. Интенсивность флуоресценции определяют с помощью анализа, для оценки результатов которого

применяют программу CELL QUEST (фирма BD), а именно, определяют среднее геометрическое значение, которое отражает количество меченого антитела, связанного с клетками. Это означает, что активности связывания тестируемой и контрольной антигенсвязывающих молекул, которые характеризуются количеством связанного меченого антитела, можно определять, оценивая среднее геометрическое значение.

«Антигенсвязывающая молекула», предлагаемая в настоящем изобретении, содержит как тяжелые, так и легкие цепи, которые образуют «вариабельную область антитела», предлагаемого в изобретении, в одной полипептидной цепи; однако она может представлять собой фрагмент антитела, лишенный константной области. Примеры указанных фрагментов антител включают димерное антитело (диабоди, Db), scFv, одноцепочечное антитело, sc(Fv)₂ и sc(Fab')₂.

Db представляет собой димер, состоящий из двух полипептидных цепей (Holliger P. и др., Proc. Natl. Acad. Sci. USA 90, 1993, сс. 6444-6448; EP 404097; WO 93/11161). В каждой полипептидной цепи вариабельная область L-цепи (VL) и вариабельная область H-цепи (VH) сцеплены с помощью линкера, который является достаточно коротким, чтобы не давать вступать в ассоциацию друг с другом указанным двум областям на одной и той же цепи, например, линкера, который состоит примерно из 5 остатков.

Поскольку линкер между VL и VH является слишком коротким, для того, чтобы происходило образование одноцепочечного фрагмента вариабельных областей, то VL и VH, кодируемые на одной и той же полипептидной цепи, димеризуются с образованием двух антигенсвязывающих центров.

Кроме того, в контексте настоящего описания понятия «scFv», «одноцепочечное антитело» и «sc(Fv)₂» все относятся к фрагменту антитела в виде одной полипептидной цепи, которая содержит вариабельные области, происходящие из тяжелой и легкой цепей, но не содержит константную область. Как правило, одноцепочечное антитело содержит также полипептидный линкер между VH- и VL-доменами, позволяющий образовывать требуемую структуру, которая, вероятно, обеспечивает связывание антигена. Одноцепочечное антитело подробно описано у Pluckthun в: «The Pharmacology of Monoclonal Antibodies», т. 113, под ред. Rosenburg и Moore, изд-во Springer-Verlag, New York, 1994, сс. 269-315» (см. также публикацию международной заявки на патент WO 1988/001649; US №№4946778 и 5260203). В конкретном варианте осуществления изобретения одноцепочечное антитело может быть биспецфическим и/или гуманизированным.

scFv представляет собой антигенсвязывающий домен, в котором VH и VL, образующие Fv, сцеплены друг с другом с помощью пептидного линкера (Proc. Natl. Acad. Sci. U.S.A. 85(16), 1988, сс. 5879-5883). VH и VL могут удерживаться в непосредственной близости с помощью пептидного линкера.

 $sc(Fv)_2$ представляет собой одноцепочечное антитело, в котором четыре вариабельные области двух VL и двух VH сцеплены линкерами, такими как пептидные линкеры, с образованием одной цепи (J Immunol. Methods 231(1-2), 1999, сс. 177-189). Две VH и две VL можно получать из различных моноклональных антител. Указанные $sc(Fv)_2$ предпочтительно включают, например, биспецифический $sc(Fv)_2$, который распознает два типа эпитопов, присутствующих в одном антигене, что описано в Journal of Immunology 152(11), 1994, сс. 5368-5374. $sc(Fv)_2$ можно получать методами, известными специалистам в данной области. Например, $sc(Fv)_2$ можно получать путем связывания scFv с помощью линкера, такого как пептидный линкер.

Согласно настоящему описанию к форме антигенсвязывающего домена, образующего

 $sc(Fv)_2$, относится антитело, в котором две единицы VH и две единицы VL организованы в следующем порядке: VH, VL, VH и VL ([VH]-линкер-[VL]-линкер-[VH]-линкер-[VL]), начиная с N-конца одноцепочечного полипептида. Порядок расположения двух единиц VH и двух единиц VL не ограничен указанной выше формой, и их можно организовывать в любом порядке. Пример порядка расположения в различных формах приведен ниже.

[VL]-линкер-[VH]-линкер-[VL]

[VH]-линкер-[VL]-линкер-[VL]-линкер-[VH]

[VH]-линкер-[VL]-линкер-[VL]

[VL]-линкер-[VL]-линкер-[VH]-линкер-[VH]

[VL]-линкер-[VH]-линкер-[VL]-линкер-[VH].

Молекулярная форма $sc(Fv)_2$ подробно описана также в WO 2006/132352. Таким образом, согласно указанным описаниям специалисты в данной области могут получать требуемый $sc(Fv)_2$, предназначенный для создания антигенсвязывающих молекул, представленных в настоящем описании.

В контексте настоящего описания понятие «вариабельный фрагмент (Fv)» относится к минимальной единице происходящего из антитела антигенсвязывающего домена, который состоит из пары, включающей вариабельную область легкой цепи антитела (VL) и вариабельную область тяжелой цепи антитела (VH). В 1988 г. Skerra и Pluckthun обнаружили, что гомогенные и активные антитела можно получать из периплазматической фракции E.coli путем встраивания гена антитела по ходу транскрипции относительно бактериальной сигнальной последовательности и индукции экспрессии гена в E.coli (Science 240(4855), 1988, сс. 1038-1041). В Fv, полученном из периплазматической фракции, VH ассоциируется с VL таким образом, чтобы связываться с антигеном.

Кроме того, антигенсвязывающую молекулу, предлагаемую в настоящем изобретении, можно конъюгировать с полимером-носителем, таким как ПЭГ, или органическим соединением, таким как противораковое средство. Альтернативно этому, можно встраивать последовательность (сайт) гликозилирования для соответствующего добавления последовательности сахарной цепи для того, чтобы сахарная цепь обеспечивала требуемое действие.

Линкеры, предназначенные для связывания вариабельных областей антитела, представляют собой произвольные пептидные линкеры, которые можно интродуцировать с помощью генной инженерии, синтетические линкеры и линкеры, описанные, например, в Protein Engineering, 9(3), 1996, сс. 299-305. Однако для целей настоящего изобретения наиболее предпочтительными являются пептидные линкеры. Длина пептидных линкеров специально не ограничена, и специалисты в данной области могут выбирать ее в зависимости от поставленной задачи. Предпочтительная длина составляет пять или большее количество аминокислот (при этом, верхний предел составляет (но не ограничиваясь только указанным), как правило, вплоть до 30 аминокислот или менее, предпочтительно 20 аминокислот или менее), и наиболее предпочтительно 15 аминокислот. Когда sc(Fv)₂ содержит три пептидных линкера, то их длина может быть одинаковой или различной.

Например, указанные пептидные линкеры включают:

45 Ser,

10

Gly-Ser,

Gly-Gly-Ser,

Ser-Gly-Gly,

```
Gly-Gly-Gly-Ser (SEQ ID NO: 20),
Ser-Gly-Gly-Gly (SEQ ID NO: 21),
Gly-Gly-Gly-Gly-Ser (SEQ ID NO: 22),
Ser-Gly-Gly-Gly-Gly (SEQ ID NO: 23),

Gly-Gly-Gly-Gly-Gly-Ser (SEQ ID NO: 24),
Ser-Gly-Gly-Gly-Gly-Gly (SEQ ID NO: 25),
Gly-Gly-Gly-Gly-Gly-Gly-Ser (SEQ ID NO: 26),
Ser-Gly-Gly-Gly-Gly-Gly-Gly (SEQ ID NO: 27),
(Gly-Gly-Gly-Gly-Gly-Gly (SEQ ID NO: 22))n,

(Ser-Gly-Gly-Gly-Gly-Gly (SEQ ID NO: 23))n,
```

30

где n обозначает целое число, равное 1 или более высокому значению. Специалисты в данной области могут выбирать длину или последовательности пептидных линкеров в зависимости от поставленной задачи.

Как правило, для перекрестного сшивания используют синтетические линкеры (химические перекрестносшивающие агенты), они представляют собой, например:

```
N-гидроксисукцинимид (NHS), дисукцинимидилсуберат (DSS), бис(сульфосукцинимидил)суберат (BS³), дитиобис(сукцинимидилпропионат) (DSP), дитиобис(сульфосукцинимидилпропионат) (DTSSP), этиленгликольбис(сукцинимидилсукцинат) (EGS), этиленгликольбис(сульфосукцинимидилсукцинат) (сульфо-EGS), дисукцинимидилтартрат (DST), дисульфосукцинимидилтартрат (сульфо-DST), бис[2-(сукцинимидоксикарбонилокси)этил]сульфон (BSOCOES) и
```

бис[2-(сукцинимидоксикарбонилокси)этил]сульфон (BSOCOES) и и бис[2-(сульфосукцинимидоксикарбонилокси)этил]сульфон (сульфо-BSOCOES). Эти перекрестносшивающие агенты поступают в продажу.

Как правило, требуется три линкера для соединения вместе четырех вариабельных областей антитела. Применяемые линкеры могут быть одного типа или различных типов.

«Fab» состоит из одной легкой цепи и СН1-домена и вариабельной области из одной тяжелой цепи. Тяжелая цепь молекулы Fab не может образовывать дисульфидные мостки с тяжелой цепью другой молекулы.

« $F(ab')_2$ » или «Fab» получают обработкой иммуноглобулина (моноклональное антитело) протеазой, такой как пепсин и папаин, и понятия относятся к фрагменту антитела, получаемого расщеплением иммуноглобулина (моноклональное антитело) вблизи дисульфидных мостиков, присутствующих между шарнирными областями в каждой из двух H-цепей. Например, папаин расщепляет IgG перед дисульфидными мостиками, присутствующими между шарнирными областями в каждой из двух H-цепей, с образованием двух гомологичных фрагментов антитела, в которых L-цепь, содержащая VL (вариабельная область L-цепи), и CL (константная область L-цепи), сцеплены с фрагментом H-цепи, содержащим VH (вариабельный домен H-цепи) и CH (γ 1-область в константной области H-цепи), через дисульфидный мостик в их C-концевых областях. Каждый из указанных двух гомологичных фрагментов антител обозначают как Fab'.

« $F(ab')_2$ » состоит из двух легких цепей и двух тяжелых цепей, содержащих в константной области СН1-домен и часть СН2-доменов, в результате между двумя

тяжелыми цепями образуются дисульфидные мостики. $F(ab')_2$, образующий антигенсвязывающую молекулу, представленную в настоящем описании, предпочтительно можно получать следующим образом. Полное моноклональное антитело или аналогичное антитело, содержащее требуемый антигенсвязывающий домен, частично расщепляют протеазой, такой как пепсин; и Fc-фрагменты удаляют путем адсорбции на колонке с белком A. Не существует ограничения касательно конкретной протеазы, если она обладает способностью избирательно расщеплять полное антитело с образованием $F(ab')_2$ в соответствующих для данного фермента реакционных условиях, таких как значение pH. Указанные протеазы представляют собой, например, пепсин и фицин.

В предпочтительном варианте осуществления изобретения «антигенсвязывающая молекула», предлагаемая в настоящем изобретении, включает мультиспецифическое антитело. При применении Fc-области с пониженной активностью связывания с Fcγрецептором в качестве Fc-области мультиспецифического антитела, можно применять соответственно Fc-область, происходящую из мультиспецифического антитела. Из мультиспецифических антител, предлагаемых в настоящем изобретении, предпочтительными являются, в частности, биспецифические антитела.

Для ассоциации мультиспецифических антител можно применять интродукцию отталкивающего заряда на поверхность раздела второй константной области Н-цепи антитела (СН2) или третьей константной области Н-цепи (СН3) для подавления нежелательных ассоциаций между Н-цепями (WO 2006/106905).

При осуществлении методики подавления нежелательной ассоциации между Н-цепями путем интродукции отталкивающего заряда на поверхность раздела СН2 или СН3 примеры аминокислотных остатков, которые контактируют на поверхности раздела других константных областей Н-цепи, включают остатки из области, содержащей остаток в положении 356 (ЕU-нумерация), остаток в положении 439 (ЕU-нумерация), остаток в положении 370 (ЕU-нумерация), остаток в положении 399 (ЕU-нумерация) и остаток в положении 409 (ЕU-нумерация) в СН3-области.

30

40

Более конкретно, например, в случае антитела, которое содержит два типа СН3-областей Н-цепей, антитело можно создавать так, чтобы 1-3 пары аминокислотных остатков, выбранных из пар аминокислотных остатков, указанных ниже в подпунктах (1)-(3), в СН3-области первой Н-цепи имели одинаковый заряд: (1) аминокислотные остатки в положениях 356 и 439 (ЕU-нумерация), которые представляют собой аминокислотные остатки, входящие в СН3-область Н-цепи; (2) аминокислотные остатки в положениях 357 и 370 (ЕU-нумерация), которые представляют собой аминокислотные остатки, входящие в СН3-область Н-цепи; и (3) аминокислотные остатки в положениях 399 и 409 (ЕU-нумерация), которые представляют собой аминокислотные остатки, входящие в СН3-область Н-цепи.

Кроме того, антитело можно создавать так, чтобы 1-3 пары аминокислотных остатков, соответствующих парам аминокислотных остатков, которые указаны выше в подпунктах (1)-(3), имеющих одинаковый тип заряда, в СН3-области первой Н-цепи, которые представляют собой пары аминокислотных остатков, выбранные из пар аминокислотных остатков, которые указаны выше в подпунктах (1)-(3), в СН3-области второй Н-цепи, которая отличается от СН3-области первой Н-цепи, имели заряд, противоположный заряду соответствующих аминокислотных остатков в вышеуказанной СН3-области первой Н-цепи.

Соответствующие аминокислотные остатки, указанные выше в подпунктах (1)-(3),

при ассоциации располагаются близко друг к другу. Специалисты в данной области могут установить для требуемой СН3-области Н-цепи или константной области Н-цепи сайты, которые соответствуют вышеуказанным остаткам, указанным в подпунктах (1) -(3), посредством моделирования гомологии и т.п., используя поступающую в продажу программу, и аминокислотные остатки этих сайтов можно подвергать при необходимости модификациям.

В указанных выше антителах «имеющие заряд аминокислотные остатки» предпочтительно выбирают, например, из аминокислотных остатков, которые входят в любую одну из указанных ниже групп (а) и (б):

- (a) глутаминовая кислота (E) и аспарагиновая кислота (D) и
- (б) лизин (K), аргинин (R) и гистидин (H).

10

20

40

Касательно указанных выше антител то, что они «имеют одинаковый тип заряда» означает, например, что два или большее количество аминокислотных остатков все представляют собой аминокислотные остатки, включенные в любую одну из вышеуказанных групп (а) и (б). Понятие «имеют противоположный заряд» означает, например, что, когда по меньшей мере один из двух или большего количества аминокислотных остатков представляет собой аминокислотный остаток, включенный в любую одну из вышеуказанных групп (а) и (б), оставшийся(иеся) остаток(ки) должен (ны) представлять собой аминокислотный остаток, включенный в другую группу.

В предпочтительном варианте вышеуказанного антитела СН3-область первой Н-цепи и СН3-область второй Н-цепи могут быть перекрестно сшиты дисульфидным мостиком.

Согласно настоящему изобретению аминокислотный остаток, подлежащий изменению, не ограничен аминокислотным остатком константной области или вариабельной области описанного выше антитела. Касательно полипептидных мутантов или гетеромультимеров специалисты в данной области могут установить аминокислотные остатки, которые образуют поверхность раздела, посредством моделирования гомологии и т.п., используя поступающую в продажу программу, и аминокислотные остатки этих сайтов можно подвергать при необходимости изменениям для того, чтобы регулировать ассоциацию.

Другие известные методики можно применять также для ассоциации мультиспецифических антител, предлагаемых в настоящем изобретении. Полипептиды с различными аминокислотами в Fc-области можно эффективно ассоциировать друг с другом путем замены боковой цепи аминокислоты, присутствующей в одной из вариабельных областей H-цепи антитела, на более крупную боковую цепь («выступ») и замены боковой цепи аминокислоты в соответствующей вариабельной области другой H-цепи на меньшую боковую цепь («впадина») так, что «выступ» помещается во «впадину» (WO 1996/027011; Ridgway J.B. и др., Protein Engineering 9, 1996, сс. 617-621; Merchant A.M. и др., Nature Biotechnology 16, 1998, сс. 677-681 и US 2013/0336973).

Кроме того, можно применять также другие известные методики для ассоциации мультиспецифических антител, предлагаемых в настоящем изобретении. Ассоциацию полипептидов, имеющих различные последовательности, можно эффективно индуцировать путем комплементарной ассоциации СН3-областей, используя сконструированный СН3-домен с обменом цепей, полученный путем изменения части СН3 в одной из Н-цепей антитела на соответствующую полученную из IgA последовательность и интродукции в комплементарную часть СН3 в другой Н-цепи соответствующей полученной из IgA последовательности (Protein Engineering Design & Selection, 23, 2010, сс. 195-202). Указанную известную методику можно применять также

для эффективного получения представляющих интерес мультиспецифических антител.

Кроме того, для получения мультиспецифических антител можно применять следующие методики: методики получения антител на основе ассоциации СН1 и СL антитела и ассоциации VH и VL, которые описаны в WO 2011/028952, WO 2014/018572 и в Nat Biotechnol. 32(2), февраль 2014 г., сс. 191-198; методики получения биспецифических антител с использованием в комбинации полученных по отдельности моноклональных антител (обмен плечей Fab, (Fab arm exchange, FAE), описанные в WO 2008/119353 и WO 2011/131746; методики регуляции ассоциации между СН3-доменами тяжелых цепей антител, описанные в WO 2012/058768 и WO 2013/063702; методики получения биспецифических антител, состоящих из двух типов легких цепей и одного типа тяжелой цепи, описанные в WO 2012/023053; методики получения биспецифических антител с использованием двух штаммов бактериальных клеток, которые индивидуально экспрессируют одну из цепей антитела, содержащего одну Н-цепь и одну L-цепь, описанные Christoph и др., Nature Biotechnology т. 31, 2013, сс. 753-758.

Одним из вариантов путей получения мультиспецифического антитела являются методы получения биспецифических антител путем смешения двух типов моноклональных антител в присутствии восстановителя для расщепления дисульфидных связей в коровой шарнирной области с последующей повторной ассоциацией для гетеродимеризации (FAE), описанной выше. При этом интродукция электростатических взаимодействий в поверхность взаимодействия СН3-области (WO 2006/106905) может индуцировать еще более эффективную гетеродимеризация в процессе повторной ассоциации (WO 2015/046467). При получении FAE с использованием встречающегося в естественных условиях IgG повторная ассоциация может происходить случайно; и поэтому теоретически биспецифические антитела можно получать лишь с 50%-ной эффективностью; однако при применении этого метода биспецифические антитела можно получать с высоким выходом.

Альтернативно этому, даже, если представляющее интерес мультиспецифическое антитело нельзя получать эффективно, мультиспецифическое антитело, предлагаемое в настоящем изобретении, можно получать путем отделения представляющего интерес мультиспецифического антитела от полученных антител и его очистки. Например, описан метод, позволяющий осуществлять очистку двух типов гомологичных форм и представляющего интерес гетерологичного антитела с помощью ионообменной хроматографии, путем установления различия в изоэлектрических точках в результате интродукции аминокислотных замен в вариабельные области двух типов Н-цепей (WO 2007/114325). К настоящему времени в качестве метода для очистки гетерологичных форм описан метод, основанный на применении белка А для очистки гетеродимеризованного антитела, содержащего H-цепь мышиного IgG2a, которая связывается с белком A, и H-цепь крысиного IgG2b, которая не связывается с белком A (WO 98/050431 и WO 95/033844). Кроме того, гетеродимеризованное антитело само можно эффективно очищать с использованием колонки с белком А путем изменения взаимодействия между каждой из Н-цепей и белком А, путем применения Н-цепей, в которых аминокислотные остатки в сайте связывания IgG-белка А в положениях 435 и 436 (ЕU-нумерация) заменены на аминокислотные остатки, которые обеспечивают другую силу связывания с белком А, такие как Туг, Ніѕ или т.п.

Альтернативно этому, можно получать общую L-цепь, которая может обеспечивать способность связываться с множеством различных H-цепей, и применять в качестве общей L-цепи мультиспецифического антитела. Для достижения эффективной экспрессии мультиспецифического IgG можно интродуцировать в клетки гены указанной общей

L-цепи и множества различных H-цепей и экспрессировать IgG (Nature Biotechnology, 16, 1998, сс. 677-681). Метод селекции общей L-цепи, для которой характерна выраженная способностью к связыванию с любыми различными H-цепями, можно применять также для селекции общей H-цепи (WO 2004/065611).

Кроме того, Fc-область, отличающуюся улучшенной C-концевой гетерогенностью, можно применять в качестве Fc-области, предлагаемой в настоящем изобретении. Более конкретно, предложены Fc-области, в которых отсутствуют глицин в положении 446 и лизин в положении 447 (EU-нумерация) в аминокислотных последовательностях двух полипептидов, образующих Fc-область, которая происходит из IgG1, IgG2, IgG3 или IgG4.

5

10

Несколько, например, две или большее количество, указанных методик можно применять в сочетании друг с другом. Кроме того, эти методики можно соответствующим образом и раздельно применять к двум Н-цепям, подлежащим ассоциации. Кроме того, указанные методики можно применять в комбинации с описанной выше Fc-областью, у которой снижена активность связывания с Fcγ-рецептором. Кроме того, антигенсвязывающая молекула, предлагаемая в настоящем изобретении, может представлять собой молекулу, полученную отдельно на основе антигенсвязывающей молекулы, подвергнутой таким описанным выше модификациям, что она имеет такую же аминокислотную последовательность.

Антигенсвязывающая молекула (первая антигенсвязывающая молекула), 20 предлагаемая в настоящем изобретении, может содержать (1) указанный выше домен, связывающийся со специфическим для рака антигеном, и (2) домен, связывающийся с представителем суперсемейства фактора некроза опухоли (TNF), или домен, связывающийся с представителем суперсемейства рецептора фактора некроза опухоли (TNF), и ее структура не ограничена указанной. В результате присутствия двух указанных связывающих доменов первая антигенсвязывающая молекула специфически активирует клетки, которые экспрессируют молекулу, принадлежащую к суперсемейству TNF или суперсемейству рецептора TNF, и которая экспрессирует специфический для рака антиген, или клетки, которые присутствуют в опухолевых тканях, содержащих эти клетки, и индуцирует очень высокие (специфические) цитотоксические воздействия в отношении указанных клеток, экспрессирующих специфический для рака антиген, или опухолевых тканей, содержащих указанные клетки. Домен, связывающийся со специфическим для рака антигеном, домен, связывающийся с представителем суперсемейства TNF и домен, связывающийся с представителем суперсемейства рецептора TNF, можно соответственно отбирать, применяя специфический для рака антиген или антиген, принадлежащий к суперсемейству TNF или суперсемейству рецептора TNF, которые описаны выше, соответственно. Указанные связывающие домены могут быть соединены непосредственно с помощью пептидных линкеров или связаны через линкеры.

40 Антигенсвязывающие молекулы, предлагаемые в настоящем изобретении, могут содержать также FcRn-связывающий домен. При применении описанной выше Fc-области антитела в качестве FcRn-связывающего домена, предпочтительной является Fc-область с пониженной активностью связывания с Fcγ-рецептором. Снижение активности связывания с Fcγ-рецептором позволяет подавлять побочные действия, являющиеся результатом иммуностимуляции, такие как высвобождение цитокинов, вызываемое перекрестным сшиванием между клетками, которые экспрессируют Fcγ-рецептор, и клетками, которые экспрессируют факторы, принадлежащие к суперсемейству рецептора TNF.

Антигенсвязывающие молекулы, предлагаемые в настоящем изобретении, можно получать с помощью известных описанных выше методов. Например, когда применяют $(1) F(ab')_2$ в качестве домена, связывающегося со специфическим для рака антигеном,

- (2) $F(ab')_2$ в качестве домена, связывающегося с представителем суперсемейства TNF или представителем суперсемейства рецептора TNF, и (3) домен, который содержит Fcобласть с пониженной активностью связывания с $Fc\gamma$ -рецептором в качестве FcRn-связывающего домена, и когда аентигенсвязывающие домены, описанные в подпунктах (1) и (2), и содержащий Fc-область домен, описанный в подпункте (3), непосредственно сшивают с помощью пептидных связей, то связанные полипептиды могут образовывать структуру антитела. Указанные антитела можно получать путем очистки из описанной выше среды для культивирования гибридом, а также путем очистки антител из культуральной среды требуемых клеток-хозяев, которые стабильно несут полинуклеотиды, кодирующие полипептиды, из которых состоит антитело.
- Помимо линкеров, примеры которых приведены выше, можно применять также линкеры с пептидными метками, такими как His-метка, HA-метка, myc-метка и FLAG-метка, в качестве линкеров, которые следует использовать, когда требуется соединение каждого из доменов через линкеры. Кроме того, предпочтительно можно использовать способность к взаимному связыванию на основе водородной связи, дисульфидной связи, ковалентной связи, ионного взаимодействия или свойство взаимного связывания в результате их комбинации. Например, можно использовать аффинность между СН1 и CL антитела и Fc-областями, происходящие из описанных выше мультиспецифических антител можно применять также для гетерологичной ассоциации Fc-области.

В настоящем изобретении первую антигенсвязывающую молекулу можно применять в сочетании со второй антигенсвязывающей молекулой.

Также как и в случае первой антигенсвязывающей молекулы, структура второй антигенсвязывающей молекулы не ограничена указанной, и она может содержать:

- (1) домен, связывающийся со специфическим для рака антигеном, и
- (2) домен, связывающийся с комплексом Т-клеточного рецептора;

и ее можно получать с помощью методов, аналогичных тем, которые описаны для первой антигенсвязывающей молекулы. Кроме того, поскольку вторая антигенсвязывающая молекула содержит домен, связывающийся со специфическим для рака антигеном, и домен, связывающийся с комплексом Т-клеточного рецептора, то ее структура не является такой же, что и у первой антигенсвязывающей молекулы. Специфический для рака антиген, связывающийся с доменом, который связывается со специфическим для рака антигеном первой антигенсвязывающей молекулы, и специфический для рака антиген, связывающийся с доменом, который связывается со специфическим для рака антигеном второй антигенсвязывающей молекулы, могут быть одинаковыми или различными, но предпочтительно они представляют собой один и тот же специфический для рака антиген. Когда специфические для рака антигены являются одинаковыми, то эпитопы, с которыми связываются первая и вторая антигенсвязывающие молекулы, могут быть одинаковыми или различными. Применение указанных первой и второй антигенсвязывающих молекул в сочетании друг с другом позволяет получать очень высокую цитотоксическую активность. Домен, связывающийся со специфическим для рака антигеном, и домен, связывающийся с комплексом Т-клеточного рецептора во второй антигенсвязывающей молекуле соответственно можно выбирать из указанных выше специфических для рака антигенов или антигенов, принадлежащих к комплексам Т-клеточного рецептора.

Аналогично первой антигенсвязывающей молекуле, вторая антигенсвязывающая

молекула, предлагаемая в настоящем изобретении, может содержать также FcRn-связывающий домен. При применении описанной выше Fc-области антитела в качестве FcRn-связывающего домена, предпочтительной, также как и в случае первой антигенсвязывающей молекулы, является Fc-область с пониженной активностью связывания с Fcγ-рецептором. Снижение активности связывания с Fcγ-рецептором позволяет подавлять побочные действия, являющиеся результатом иммуностимуляции, такие как высвобождение цитокинов, вызываемое перекрестным сшиванием между клетками, которые экспрессируют Fcγ-рецептор, и клетками, которые экспрессируют факторы, принадлежащие к суперсемейству рецептора TNF.

Кроме того, настоящее изобретение относится к полинуклеотидам, кодирующим антигенсвязывающие молекулы, предлагаемые в настоящем изобретении, и их можно встраивать в любые экспрессионные векторы. Для получения клеток, экспрессирующих антигенсвязывающие молекулы, соответствующего хозяина можно трансформировать экспрессионным вектором. Антигенсвязывающие молекулы, кодируемые полинуклеотидом, можно получать путем культивирования клеток, экспрессирующих антигенсвязывающие молекулы, и сбора продукта экспрессии из супернатанта культуры. В частности, настоящее изобретение относится к векторам, несущим полинуклеотид, который кодирует антигенсвязывающую молекулу, предлагаемую в настоящем изобретении, клеткам, которые содержат векторы, и способам получения антигенсвязывающих молекул, заключающимся в том, что культивируют клетки и собирают антигенсвязывающие молекулы из супернатанта культуры. Для описанных выше целей можно использовать такие же методики, которые описаны выше для рекомбинантных антител.

Фармацевтические композиции

25

Другим объектом настоящего изобретения являются фармацевтические композиции, которые содержат в качестве действующего вещества описанную выше первую антигенсвязывающую молекулу. Кроме того, настоящее изобретение относится к фармацевтическим композициям, которые индуцируют цитотоксичность (терапевтические агенты для индукции цитотоксичности), ингибиторам клеточной пролиферации и противораковым агентам, которые содержат в качестве действующего вещества антигенсвязывающую молекулу. Фармацевтические композиции, предлагаемые в настоящем изобретении, можно применять в качестве средств для терапии или средств для профилактики рака. Согласно настоящему изобретению терапевтические агенты для индукции клеточной цитотоксичности, ингибиторы клеточной пролиферации и противораковые агенты, предлагаемые в настоящем изобретении, предпочтительно вводят индивидуумам, страдающим раком или имеющим вероятность рецидива рака.

Кроме того, согласно настоящему изобретению терапевтические агенты для индукции клеточной цитотоксичности, ингибиторы клеточной пролиферации и противораковые агенты, которые содержат в качестве действующего вещества первую антигенсвязывающую молекулу, можно применять в способах индукции цитотоксичности, способах подавления клеточной пролиферации, способах активизации иммунитета против раковых клеток или опухолевых тканей, содержащих раковые клетки, или способах предупреждения или лечения рака, заключающихся в том, что осуществляют стадию, на которой вводят антигенсвязывающую молекулу индивидууму; или в изобретении предложено применение антигенсвязывающей молекулы для получения фармацевтических композиций, предназначенных для индукции цитотоксичности, ингибиторов клеточной пролиферации и противораковых агентов. Альтернативно этому, предложены антигенсвязывающие молекулы для применения

для индукции цитотоксичности, подавления клеточной пролиферации, активизации иммунитета против раковых клеток или опухолевых тканей, содержащих раковые клетки, или лечения или предупреждения рака.

В контексте настоящего описания понятие «содержат в качестве действующего вещества антигенсвязывающую молекулу» означает присутствие антигенсвязывающей молекулы в качестве основного действующего вещества, однако содержание антигенсвязывающей молекулы не ограничено конкретными значениями.

Кроме того, фармацевтические композиции или фармацевтические композиции, предназначенные для индукции цитотоксичности, ингибиторы клеточной пролиферации и противораковые агенты, предлагаемые в настоящем изобретении (далее в контексте настоящего описания обозначены как фармацевтические композиции или т.п.), можно применять в комбинации с вышеуказанными вторыми антигенсвязывающими молекулами. Применение второй антигенсвязывающей молекулы в комбинации с фармацевтической композицией или т.п., содержащей первую антигенсвязывающую молекулу, может усиливать цитотоксические действия в отношении экспрессирующих антиген клеток. В контексте настоящего описания «применение второй антигенсвязывающей молекулы в комбинации» может относиться к варианту, согласно которому смешивают вторую антигенсвязывающую молекулу с фармацевтической композицией или т.п., содержащей первую антигенсвязывающую молекулу, или варианту, согласно которому вторую антигенсвязывающую молекулу включают в фармацевтическую композицию или т.п., которая отличается от фармацевтической композиции или т.п., содержащей первую антигенсвязывающую молекулу. Их лекарственные формы могут быть одинаковыми или различными. Кроме того, когда первую антигенсвязывающую молекулу и вторую антигенсвязывающую молекулу включают в различные фармацевтические композиции или т.п., эти фармацевтические композиции или т.п. можно вводить индивидууму одновременно или по отдельности. Кроме того, эти фармацевтические композиции или т.п. можно включать в наборы.

В настоящем изобретении первую антигенсвязывающую молекулу или фармацевтическую композицию, которая содержит в качестве действующего вещества первую антигенсвязывающую молекулу, можно применять в качестве фармацевтической композиции, предназначенной для усиления цитотоксической активности или повышения индукции цитотоксической активности путем совместного ее применения с второй антигенсвязывающей молекулой или фармацевтической композицией или т.п., которая содержит в качестве действующего вещества вторую антигенсвязывающую молекулу.

Кроме того, вторую антигенсвязывающую молекулу или фармацевтическую композицию, которая содержит в качестве действующего вещества вторую антигенсвязывающую молекулу, можно применять в качестве фармацевтической композиции, предназначенной для усиления цитотоксической активности или повышения индукции цитотоксической активности путем совместного ее применения с первой антигенсвязывающей молекулой или фармацевтической композицией или т.п., которая содержит в качестве действующего вещества первую антигенсвязывающую молекулу.

В контексте настоящего описания понятие «совместное применение» включает вариант, согласно которому фармацевтическую композицию или т.п., которая содержит в качестве действующего вещества первую антигенсвязывающую молекулу, и фармацевтическую композицию или т.п., которая содержит в качестве действующего вещества вторую антигенсвязывающую молекулу, вводят одновременно индивидууму, и вариант, согласно которому их вводят по отдельности индивидууму. Их лекарственные формы могут быть одинаковыми или различными. Кроме того, эти фармацевтические

композиции или т.п. можно включать в наборы.

20

Кроме того, настоящее изобретение относится к способу, в котором используются действия, возникающие в результате совместного применения первой антигенсвязывающей молекулы, описанной выше, или фармацевтической композиции или т.п., которая содержит в качестве действующего вещества первую антигенсвязывающую молекулу, и второй антигенсвязывающей молекулы или фармацевтической композиции или т.п., которая содержит в качестве действующего вещества вторую антигенсвязывающую молекулу, для повышения цитотоксической активности или противоопухолевого действия второй антигенсвязывающей молекулы или фармацевтической композиции или т.п., которая содержит в качестве действующего вещества вторую антигенсвязывающую молекулу, с помощью первой антигенсвязывающей молекулы или фармацевтической композиции или т.п., которая содержит в качестве действующего вещества первую антигенсвязывающую молекулу. Кроме того, в настоящем изобретении предложен способ усиления цитотоксической активности или противоопухолевого действия первой антигенсвязывающей молекулы или фармацевтической композиции или т.п., которая содержит в качестве действующего вещества первую антигенсвязывающую молекулу, с помощью второй антигенсвязывающей молекулы или фармацевтической композиции или т.п., которая содержит в качестве действующего вещества вторую антигенсвязывающую молекулу.

Кроме того, фармацевтические композиции или т.п., предлагаемые в настоящем изобретении, можно применять путем объединения при необходимости нескольких типов первой антигенсвязывающей молекулы и/или второй антигенсвязывающей молекулы. Например, путем применения «коктейля» из нескольких антигенсвязывающих молекул, предлагаемых в изобретении, которые связываются с одним и тем же антигеном, можно повышать цитотоксическую активность в отношении клеток, экспрессирующих антиген.

При необходимости антигенсвязывающие молекулы, предлагаемые в настоящем изобретении, можно капсулировать в микрокапсулы (микрокапсулы, изготовленные из гидроксиметилцеллюлозы, желатина, поли(метилметакрилата) и т.п.), и можно включать в компоненты коллоидных систем, предназначенных для введения лекарственных веществ (липосомы, альбуминовые микросферы, микроэмульсии, наночастицы и нанокапсулы) (например, см. «Remington's Pharmaceutical Science 16-ое изд.», под ред. Oslo, 1980). Кроме того, известны методы приготовления агентов в виде средств с замедленным высвобождением, и их можно применять для антигенсвязывающих молекул, предлагаемых в настоящем изобретении (J. Biomed. Маter. Res. 15, 1981, сс. 267-277; Chemtech. 12, 1982, сс. 98-105; US №3773719; опубликованные европейские патенты (EP) EP 58481 и EP 133988; Biopolymers 22, 1983, сс. 547-556).

Фармацевтические композиции, агенты, подавляющие клеточную пролиферацию, или противораковые агенты, предлагаемые в настоящем изобретении, можно вводить пациенту либо орально, либо парентерально. Предпочтительным является парентеральное введение. В частности, указанные методы введения включают инъекцию, введение в нос, транспульмонарное введение и чрескожное введение. Инъекции включают, например, внутривенные инъекции, внутримышечные инъекции, внутрибрюшинные инъекции и подкожные инъекции. Например, фармацевтические композиции, терапевтические агенты для индукции клеточной цитотоксичности, агенты, подавляющие клеточную пролиферацию, или противораковые агенты, предлагаемые в настоящем изобретении, можно применять местно или системно путем инъекции.

Кроме того, приемлемые методы введения можно выбирать в зависимости от возраста пациента и симптомов. Вводимую дозу можно выбирать, например, из следующего диапазона: от 0,0001 до 1000 мг на кг веса тела на каждое введение. Альтернативно этому, дозу можно выбирать, например, из следующего диапазона: от 0,001 до 100000 мг/пациента. Однако доза фармацевтической композиции, предлагаемой в настоящем изобретении, не ограничена указанными дозами.

Фармацевтические композиции, предлагаемые в настоящем изобретении, можно приготавливать с помощью общепринятых методов (например, см. Remington's Pharmaceutical Science, последнее изд., изд-во Mark Publishing Company, Easton, U.S.A.), и они могут содержать также фармацевтически приемлемые носители и добавки. Их примерами являются (но не ограничиваясь только ими) поверхностно-активные вещества, эксципиенты, красители, ароматизаторы, консерванты, стабилизаторы, буферы, суспендирующие агенты, придающие изотоничность агенты, связующие вещества, разрыхлители, замасливатели, повышающие текучесть агенты и корригенты, но можно применять и другие общепринятые носители. Конкретными примерами носителей являются легкая безводная кремниевая кислота, лактоза, кристаллическая целлюлоза, маннит, крахмал, кармеллоза кальция, кармеллоза натрия, гидроксипропилцеллюлоза, гидроксипропилметилцеллюлоза, поливинилацетальдиэтиламиноацетат, поливинилпирролидон, желатин, триглицерид со средней длиной цепи, полиоксиэтиленированное гидрогенизированное касторовое масло 60, сахароза, карбоксиметилцеллюлоза, кукурузный крахмал, неорганическая соль и т.п.

В настоящем изобретении предложены также способы индукции повреждения клеток, экспрессирующих специфический для рака антиген, или опухолевых тканей, которые содержат клетки, экспрессирующие специфический для рака антиген, и способ подавления клеточной пролиферации указанных клеток или указанных опухолевых тканей, заключающиеся в том, что приводят в контакт клетки, экспрессирующие специфический для рака антиген, с первой антигенсвязывающей молекулой или с первой антигенсвязывающей молекулой, а также второй антигенсвязывающей молекулой, предлагаемой в настоящем изобретении, которая связывается со специфическим для рака антигеном. Изобретение не ограничено клетками, с которыми связывается антигенсвязывающая молекула, предлагаемая в настоящем изобретении, которая связывается со специфическим для рака антигеном, если они представляют собой клетки, которые экспрессируют специфический для рака антиген. В частности, в настоящем изобретении предпочтительными экспрессирующими раковый антиген клетками являются клетки рака яичника, клетки рака предстательной железы, клетки рака молочной железы, клетки рака матки, клетки рака печени, клетки рака легкого, клетки рака поджелудочной железы, клетки рака желудка, клетки рака мочевого пузыря и клетки рака ободочной кишки.

Согласно настоящему изобретению «приведение в контакт» можно осуществлять, например, добавляя антигенсвязывающую молекулу, предлагаемую в настоящем изобретении, которая связывается с раковым антигеном, в раствор к клеткам, экспрессирующим раковый антиген, которые культивируют in vitro. В этом случае добавляемую антигенсвязывающую молекулу можно применять в пригодной для этой цели форме, такой как раствор или твердое вещество, полученное путем сушки вымораживанием, и т.п.Когда осуществляют добавление в виде водного раствора, то можно применять водный раствор, содержащий только антигенсвязывающую молекулу, предлагаемую в изобретении, или можно применять раствор, содержащий поверхностно-

40

активные вещества, эксципиенты, красители, ароматизаторы, консерванты, стабилизаторы, буферы, суспендирующие агенты, придающие изотоничность агенты, связующие вещества, разрыхлители, замасливатели, повышающие текучесть агенты и корргиенты, описанные выше. Концентрация добавляемой молекулы не имеет решающего значения; однако конечная концентрация в культуральном растворе предпочтительно составляет от 1 пг/мл до 1 г/мл, более предпочтительно от 1 нг/мл до 1 мг/мл и еще более предпочтительно от 1 мкг/мл до 1 мг/мл.

Согласно другому варианту осуществления настоящего изобретения «приведение в контакт» можно осуществлять также путем введения антигенсвязывающей молекулы, предлагаемой в настоящем изобретении, которая связывается с раковым антигеном. животным кроме человека, которым трансплантированы клетки, экспрессирующие специфический для рака антиген, и животным, у которых эндогенно происходит экспрессия специфических для рака антигенов. Метод введения может быть оральным или парентеральным, и предпочтительным является парентеральное введение. В частности, указанные методы введения включают инъекцию, введение в нос, транспульмонарное введение и чрескожное введение. Инъекции включают, например, внутривенные инъекции, внутримышечные инъекции, внутрибрюшинные инъекции и подкожные инъекции. Фармацевтическую композицию, предлагаемую в настоящем изобретении, или фармацевтическую композицию, предназначенную для индукции цитотоксичности, ингибитор клеточной пролиферации и противораковый агент можно применять местно или системно путем инъекции. Приемлемые методы введения можно выбирать в зависимости от возраста подопытного животного и симптомов. Когда осуществляют добавление в виде водного раствора, то можно применять водный раствор, содержащий только антигенсвязывающую молекулу, предлагаемую в изобретении, или можно применять раствор, содержащий поверхностно-активные вещества, эксципиенты, красители, ароматизаторы, консерванты, стабилизаторы, буферы, суспендирующие агенты, придающие изотоничность агенты, связующие вещества, разрыхлители, замасливатели, повышающие текучесть агенты и корргиенты, описанные выше. Дозу можно выбирать, например, из следующего диапазона: от 0,0001 до 1000 мг на кг веса тела на каждое введение. Альтернативно этому, дозу можно выбирать, например, из следующего диапазона: от 0,001 до 100000 мг/пациента. Однако доза антигенсвязывающей молекулы, предлагаемой в настоящем изобретении, не ограничена указанными дозами.

Описанный ниже метод предпочтительно используют в качестве метода оценки или количественного измерения цитотоксичности, индуцируемой в клетках, экспрессирующих специфический для рака антиген, которые связаны с доменом, связывающимся со специфическим для рака антигеном, который входит в антигенсвязывающую молекулу, предлагаемую в настоящем изобретении, в результате контакта антигенсвязывающей молекулы с клетками. Методы оценки или количественного измерения цитотоксической активности in vitro включают методы определения активности цитотоксических Т-клеток или т.п.Обладает ли антигенсвязывающая молекула, предлагаемая в настоящем изобретении, способностью индуцировать опосредуемую Т-клетками цитотоксичность, можно определять с помощью известных методов (см., например, Current protocols in Immunology, глава 7. Immunologic studies in humans, под ред. John E, Coligan и др., изд-во, John Wiley & Sons, Inc., 1993 и т.п.). При осуществлении анализа активности антигенсвязывающую молекулу, антигенсвязывающий домен которой связывается с антигеном, отличным от связывающегося молекулой антигена, предлагаемого в настоящем изобретении, и представляет собой антиген, который не экспрессируется

на клетках, которые используют для анализа, можно применять в качестве контроля и анализировать таким же образом, что и антигенсвязывающую молекулу, предлагаемую в настоящем изобретении, и активность можно оценивать, определяя, обладает ли антигенсвязывающая молекула, предлагаемая в настоящем изобретении, более выраженной цитотоксической активностью, чем применяемая в качестве контроля антигенсвязывающая молекула.

Для оценки или количественного измерения цитотоксической активности in vivo, например, клетки, экспрессирующие антиген, который связывается доменом, связывающимся со специфическим для рака антигеном, который входит в антигенсвязывающую молекулу, предлагаемую в настоящем изобретении, трансплантируют внутрикожно или подкожно подопытному животному кроме человека, а затем, начиная с дня трансплантации или после него, вводят тестируемую антигенсвязывающую молекулу внутривенно или внутрибрюшинно каждый день или с интервалами, составляющими несколько дней. Размер опухоли определяют ежедневно и различие в размере опухоли можно рассматривать как цитотоксическую активность. Также как и в анализе in vitro, вводят контрольную антигенсвязывающую молекулу, и принимают, что можно считать, что антигенсвязывающая молекула, предлагаемая в настоящем изобретении, обладает цитотоксической активностью, когда размер опухолей является существенно меньшим в группе, которую обрабатывали антигенсвязывающей молекулой, предлагаемой в настоящем изобретении, чем в группе, которую обрабатывали контрольной антигенсвязывающей молекулой.

В качестве метода оценки или количественного измерения подавляющего воздействия на пролиферацию клеток, экспрессирующих антиген, который связывается доменом, связывающимся со специфическим для рака антигеном, который входит в антигенсвязывающую молекулу, предлагаемую в настоящем изобретении, путем контакта с антигенсвязывающей молекулой, предпочтительно можно применять метод количественного измерения поглощения меченного с помощью изотопа тимидина клетками или МТТ-метод. В качестве метода оценки или количественного измерения подавляющей клеточную пролиферацию активности in vivo предпочтительно можно применять такой же метод, который описан выше для оценки или количественного измерения цитотоксической активности in vivo.

В настоящем изобретении предложены также наборы, которые можно применять в способе, предлагаемом в настоящем изобретении, которые содержат антигенсвязывающую молекулу, предлагаемую в настоящем изобретении, или антигенсвязывающую молекулу, полученную способом, предлагаемым в настоящем изобретении. Кроме того, наборы могут быть упакованы вместе с дополнительным фармацевтически приемлемым носителем, растворителем и с инструкциями с описанием метода применения.

Кроме того, настоящее изобретение относится к антигенсвязывающей молекуле, предлагаемой в настоящем изобретении, или антигенсвязывающей молекуле, полученной способом, предлагаемым в настоящем изобретении, для применения в способе, предлагаемом в настоящем изобретении.

Специалистам в данной области должно быть очевидно, что оптимальные комбинации одного или нескольких вариантов осуществления изобретения, представленных в настоящем описании, включены в настоящее изобретение, если отсутствуют технические ограничения, определяемые общепринятыми техническими сведениями, которые известны специалистам в данной области.

Все процитированные в настоящем описании документы, характеризующие известный

уровень техники, включены в настоящее описание в качестве ссылки.

Примеры

5

Ниже настоящее изобретение описано со ссылкой на конкретные примеры, которые не ограничивают объем изобретения.

Приведенный для справки пример 1. Конструирование экспрессионных векторов для антител и экспрессия и очистка антител

Синтез полноразмерных генов, кодирующих нуклеотидные последовательности вариабельных областей Н-цепи и L-цепи антитела, осуществляли согласно методам получения, известным специалистам в данной области, используя сборку с помощью ПЦР и т.п. Интродукцию аминокислотных замен осуществляли согласно методам получения, известным специалистам в данной области, используя ПЦР или т.п.Полученный фрагмент плазмиды встраивали в экспрессионный вектор для клеток животных и получения экспрессионного вектора для Н-цепи и экспрессионного вектора для L-цепи. Нуклеотидную последовательность полученных экспрессионных векторов определяли методами, известными специалистам в данной области. Полученные плазмиды кратковременно интродуцировали в клеточную линию НЕК293H, полученную из раковых клеток почки человеческого эмбриона (фирма Invitrogen) или в клетки FreeStyle293 (фирма Invitrogen) для экспрессии антитела. Полученный супернатант культуры собирали и затем пропускали через фильтр MILLEX(R)-GV с размером отверстий 0,22 мкм (фирма Millipore) или через фильтр MILLEX(R)-GV с размером отверстий 0,45 мкм (фирма Millipore) для получения супернатанта культуры. Антитела очищали из полученного супернатанта культуры с помощью методов, известных специалистам в данной области, применяя систему rProtein A SepharoseTM Fast Flow (фирма GE Healthcare) или Protein G SepharoseTM 4 Fast Flow (фирма GE Healthcare). Для оценки концентрации очищенных антител измеряли абсорбцию при длине волны 280 нм с помощью спектрофотометра. На основе полученных данных рассчитывали концентрацию антитела на основе коэффициента экстинкции, определенного с помощью таких методов, как PACE (Protein Science 4, 1995, сс. 2411-2423).

Приведенный для справки пример 2. Метод получения мышиного Гсу-рецептора (mFcyR) и метод анализа взаимодействия между модифицированным антителом и mFcyR Внеклеточные домены мышиных FcγR получали следующим методом. Сначала гены внеклеточных доменов FcyR синтезировали с помощью метода, хорошо известного специалистам в данной области. Для этого получали последовательность каждого FcyR на основе зарегистрированной в NCBI информации. В частности, mFcqRI получали на основе последовательности референс-последовательности NCBI: NP_034316.1; mFcγRII получали на основе последовательности референс-последовательности NCBI: NP_034317.1; mFcγRIII получали на основе последовательности референспоследовательности NCBI: NP_034318.2; и mFcyRIV получали на основе последовательности референс-последовательности NCBI: NP_653142.2. К С-концу указанных последовательностей присоединяли His-метку. Каждый из полученных генных фрагментов встраивали в экспрессионный вектор для клеток животных для создания экспрессионных векторов. Сконструированный экспрессионный вектор кратковременно интродуцировали в полученные из раковых клеток клетки почки человеческого эмбриона FreeStyle293 (фирма Invitrogen) для экспрессии представляющих интерес белков. Полученный супернатант культуры собирали и затем пропускали через фильтр MILLEX(R)-GV с размером отверстий 0,22 мкм с получением супернатанта культуры. Полученные супернатанты культур очищали согласно технологии, включающей 4 следующие стадии: стадия 1 - ионообменная колоночная хроматография, стадия 2 - аффинная колоночная хроматография для His-метки (HisTrap HP), стадия 3 - колоночная гель-фильтрация (Супердекс200) и стадия 4 - фильтрация в асептических условиях. Ионообменную колоночную хроматографию на стадии 1 осуществляли, используя Q Сефарозу HP для mFcyRI, используя SP Сефарозу FF для mFcyRII и mFcyRIV, и используя SP Сефарозу HP для mFcqRIII. Когда на стадии 3 применяли растворитель и последующая стадия включала D-3ФР(-), то для mFcγRIII применяли D-3ФР(-), содержащий 0.1М аргинин. Для очищенных белков измеряли абсорбцию при длине волны 280 нм с помощью спектрофотометра. На основе полученных данных рассчитывали концентрацию очищенных белков на основе коэффициента экстинкции, определенного с помощью таких методов, как PACE (Protein Science 4, 1995, сс. 2411-2423). Взаимодействие между каждым модифицированным антителом и Гсу-рецептором, полученным согласно описанному выше методу, анализировали с помощью Віасоге T100 (фирма GE Healthcare), Biacore T200 (фирма GE Healthcare), Biacore A100 и Biacore 4000. Применяемый подвижный буфер представлял собой HBS-EP+ (фирма GE Healthcare) и температуру, при которой осуществляли измерения, устанавливали на 25°C. Применяемый чип представлял собой: сенсорный чип серий S CM5 (фирма GE Healthcare) или сенсорный чип серий S CM4 (фирма GE Healthcare), на котором иммобилизовали белок L (фирма ACTIGEN или фирма BioVision) с помощью метода аминного сочетания. Представляющие интерес антитела «захватывали» на указанных сенсорных чипах и твегу R, разбавленному подвижным буфером, давали взаимодействовать с ним. Измеряли уровень связывания антителами и сравнивали между антителами. Однако, поскольку количество связанного mFcyR зависело от количества «захваченного» антитела, сравнение осуществляли с использованием скорректированных значений, полученных путем деления количества связанного тБсү на количество каждого иммобилизованного антитела. Кроме того, 10 мМ глицин-HCl, pH 1,5 применяли для отмывки «захваченного» антитела от сенсорных чипов и сенсорный чип регенерировали и использовали повторно. Кинетический анализ для расчета величин KD каждого измененного антитела в отношении FcyR осуществляли с помощью описанного ниже метода. Сначала представляющие интерес антитела «захватывали» на вышеуказанных сенсорных чипах и mFcyR, разведенному подвижным буфером, давали взаимодействовать с ними. Для получения сенсограмм результаты измерений обрабатывали методом глобальной аппроксимации согласно модели связывания 1:1 Лэнгмюра, применяя программу Віасоге Evaluation для расчета константы скорости ассоциации ka (л/моль/с) и константы скорости диссоциации kd (1/c). Их этих величин определяли константу диссоциации KD (моль/л).

Приведенный для справки пример 3. Подопытные животные и клеточные линии Применяемые подопытные животные представляли собой самок мышей линии C57BL/6 (фирма Charles River Laboratories Japan, Inc.) или самок мышей линии Balb/c (фирма Charles River Laboratories Japan, Inc.). Их выращивали к виварии при постоянных условиях окружающей среды (температура: 20-26°С; освещение: 12-часовой цикл светатемнотые) со свободным доступом к корму и воде. Человеческий ген GPC3 интегрировали в хромосому мышиной клеточной линии рака легкого LLC (ATCC № CRL-1642) с помощью метода, хорошо известного специалистам в данной области, получая клеточную линию LLC-GPC3, которая, характеризуется высоким уровнем экспрессии человеческого GPC3 (2,3×10⁵/клетку) определяли с помощью набора QIFI (фирма Dako) согласно рекомендованному производителем методу. Аналогично этому, человеческий ген GPC3 интегрировали в хромосому мышиной клеточной линии колоректального рака CT-26

(ATCC №0. CRL-2638), получая клеточную линию CT26-GPC3, характеризующуюся высоким уровнем экспрессии (уровень экспрессии: 3,1×10⁵/клетку). Для поддержания человеческого гена GPC3 указанные рекомбинантные линии клеток культивировали в рекомендованных ATCC средах, добавляя генетицин (фирма GIBCO) в дозе 400 мкг/мл для LLC-GPC3 и 200 мкг/мл для CT26-GPC3. После культивирования указанные клетки отделяли, применяя 2,5 г/л трипсина-1 мМ ЭДТК (фирма Nacalai Tesque), и затем применяли в каждом из экспериментов.

Пример 1. Получение мышиных антител к CD137 и оценка их агонистической активности

1-1. Получение мышиного антитела к мышиному CD137 и оценка способности связываться с mFc γ R

10

1D8VH (SEQ ID NO: 28), вариабельную область антитела к мышиному CD137, описанному в WO 2005/017148, которую применяли в качестве вариабельной области Н-цепи антитела, и конструкцию 1D8VH-mIgG1 (SEQ ID NO: 29), имеющую константную область Н-цепи встречающегося в естественных условиях мышиного IgG1, которую применяли в качестве константной области Н-цепи антитела, получали согласно методу, описанному в приведенном для справки примере 1. 1D8VH-mF18 (SEQ ID NO: 30) получали путем интродукции в 1D8VH-mIgG1 модификации, приводящей к замене на Lys Pro в положении 235 (EU-нумерация), и модификации, приводящей к замене на Lys Ser в положении 239 (EU-нумерация), которые являются модификациями, которые элиминируют связывание с FcyR, что описано в WO 2012/133782. Кроме того, получали 1D8VH-MB492 (SEQ ID NO: 31) путем интродукции в 1D8VH-mIgG1 модификаций (Т230E, V231P, P232N, S238E, S239D, N324D), которые повышают связывание mFcgRII. Конструкцию 1D8VL, описанную в WO 2005/017148, применяли в качестве вариабельной области L-цепи антитела, и конструкцию 1D8VL-mk0 (SEQ ID NO: 32), которая имеет константную область мышиной к-цепи, применяли в качестве константной области Lцепи. Их экспрессировали и очищали согласно методу, описанному в приведенном для справки примере 1, с получением 1D8VH-mIgG1/1D8VL-mk0, 1D8VH-mF18/1D8VL-mk0 и 1D8VH-MB492/1D8VL-mk0. Ниже в контексте настоящего описания указанные антитела обозначали для простоты как 1D8-mIgG1, 1D8-mF18 и 1D8-MB492.

Кроме того, для измерения связывания с mFcγR каждой константной области получали H237-mIgG1 (SEQ ID NO: 34) и H237-MB492 (SEQ ID NO: 35), которые имеют вариабельную область H237 антитела к человеческому рецептору интерлейкина 6 (SEQ ID NO: 33), описанного в WO 2009/125825, в качестве вариабельной области H-цепи. MRAL-k0 (SEQ ID NO: 36), представляющую собой L-цепь тоцилизумаба, применяли в качестве L-цепи антитела. Экспрессию и очистку осуществляли согласно методу, описанному в приведенном для справки примере 1, с получением H237-mIgG1/MRAL-k0 и H237-MB492/MRAL-k0. Аналогичным образом получали mPM1H-mIgG1 (SEQ ID NO: 37) и mPM1H-mF18 (SEQ ID NO: 38), которые имели вариабельную область (mPM1H) мышиного PM-1, т.е. мышиного антитела, которое связывается с человеческим IL6R (Sato, Cancer Res., 53, 1993, сс. 851-856), в качестве вариабельной области H-цепи антитела. МRAL-k0 применяли в качестве L-цепи антитела. Экспрессию и очистку осуществляли согласно методу, описанному в приведенном для справки примере 1, с получением mPM1H-mIgG1/MRAL-k0 и mPM1H-mF18/MRAL-k0.

Способность mPM1H-mIgG1/MRAL-k0 и mPM1H-mF18/MRAL-k0 связываться с mFc γ RII и mFc γ RIII оценивали согласно методу, описанному в приведенном для справки примере 2. Встречающийся в естественных условиях мышиный IgG1 (mIgG1) не связывается с mFc γ RI или mFc γ RIV, а из четырех типов мышиного Fc γ R связывается

только с mFcγRII и mFcγRIII (Nimmerjahn, Science, 310, 2005, сс. 1510-1512). Таким образом, можно ожидать, что интродукция модификаций, которые снижают связывание с mFcγR, во встречающийся в естественных условиях mIgG1 может приводить к получению вариантов, обладающих пониженной способностью связываться с mFcγRII и mFcγRIII, и таким образом к пониженному связыванию со всеми mFcγR. Результаты представлены в таблице 1.

Таблица 1.

10

15

20

Обозначение константной области	Уровень связывания (RU)	
	mFcγRII	mFcγRIII
mIgG1	202,1	450
mF18	1,01	2,75

Указанные выше результаты продемонстрировали, что константная область mF18 представляет собой вариант со значительно сниженной способностью связываться с mFc γ R.

Аналогично этому, в таблице 2 представлены результаты оценки связывания H237-mIgG1/MRAL-k0 и H237-MB492/MRAL-k0 с $mFc\gamma RII$ и $mFc\gamma RIII$.

Таблица 2

Обозначение константной области	KD (M)		Относительная активность связывания	
	mFcγRII	mFcγRIII	mFcγRII	mFcγRIII
mIgG1	2,10E-07	2,82E-07	1,0	1,0
MB492	3,38E-10	2,58E-08	621,5	10,9

«Относительная активность связывания» в таблице означает активность связывания MB492, когда активность связывания встречающегося в естественных условиях mIgG1 с каждым из mFcγR принимают за 1. Указанные выше результаты продемонстрировали, что MB492 представляет собой вариант, у которого в 621,5 раза увеличилось связывание с mFcγRII и в 10,9 раза увеличилось связывание с mFcγRII по сравнению с mIgG1.

1-2. Оценка агонистического действия in vitro в отношении CD137 антител к мышиному CD137

Выделяли селезенки из наивных самок мышей линии C57BL/6. Клетки суспендировали в содержащей 10% FBS среде RPMI1640, дополненной 0,5 мкг/мл иономицина и 10 нг/мл форбол-12 миристат-13-ацетата (ФМА), и высевали в 96-луночный планшет с плотностью 2×10^5 клеток/100 мкл/лунку. Антитела к мышиному CD137 добавляли в указанные лунки в концентрации 3 мкг/мл и клетки культивировали в следующих условиях: 37° C и 5% CO₂ в течение 3 дней. Собирали супернатант культуры и определяли концентрацию мышиного IFN- γ в супернатанте с помощью ELISA для оценки активации селезеночных T-клеток. ELISA осуществляли согласно инструкциям производителя, прилагаемым к набору (фирма PeproTech).

Установлено (фиг. 1), что среди полученных мышиных антител в виде IgG1 к мышиному CD137 антитело (1D8-mF18), которое обладало очень значительно пониженной способностью связывать FcγR, не обладало активностью, а антитело (1D8-mIgG1), которое имело Fc дикого типа, активировало Т-клетки. Кроме того, специфическая активность антитела (1D8-MB492), которое обладало повышенной способностью связываться с FcγRIIB, повышалась примерно в 8 раз по сравнению с активностью антитела, которое имело Fc дикого типа.

Это свидетельствует о том, что аналогично агонистическим антителам к другим TNFRSF, которые описаны в Proc Natl Acad Sci USA, 110(48), 2013, сс. 19501-19506, для того, чтобы антитела к CD137 обладали агонистической активностью, антитела должны

связываться с FcγRII, и антитела к CD137, связывающиеся с экспрессирующими CD137 Т-клетками, должны перекрестно связываться с экспрессирующими FcγRII клетками (фиг. 2). FcγRII экспрессируется на многих иммунных клетках и фагоцитах, таких как В-клетки. Таким образом, агонистическая активность антител к CD137 может проявляться системно и в результате приводить к побочным действиям.

Пример 2. Получение биспецифических антител к человеческому GPC3/мышиному CD137 и оценка их агонистической активности

2-1. Концепция разработки зависимых от ракового антигена агонистического антитела на основе биспецифических антител к раковому антигену и CD137

10

20

Согласно данным, представленным в примере 1, поскольку агонистическая активность обычных антител к CD137 проявляется системно, то, вероятно, противоопухолевые действия и побочные действия в здоровой ткани (такие как Т-клеточная активация) не поддаются разделению. Таким образом, при создании настоящего изобретения было высказано предположение о том, что применение биспецифических антител против ракового антигена и CD137 может обеспечивать проявление агонистической активности антителом к CD137 только в раковых тканях, в которых присутствует раковый антиген, посредством перекрестного сшивания экспрессирующих CD137 Т-клеток и экспрессирующих раковый антиген клеток (таких как раковые клетки) через биспецифические антитела (фиг. 3).

2-1. Получение биспецифических антител к человеческому GPC3/мышиному CD137 (GPC3 ERY22-1D8, GPC3 ERY22-G2-1D8 и GPC3 ERY22-G4-1D81

Получали три типа биспецифических антител к человеческому GPC3/к мышиному CD137, которые имели константную область человеческого IgG1, IgG2 или IgG4 соответственно. Для создания этих молекул применяли технологию получения CrossMab, описанную у Schaefer с соавторами (Schaefer, Proc. Natl. Acad. Sci., 108, 2011, сс. 11187-11192), для регуляции ассоциации между Н- и L-цепями и эффективного получения биспецифических антител. Более конкретно, указанные молекулы получали путем обмена VH- и VL-доменов Fab к человеческому GPC3, согласно методу, описанному в WO 2012/073985. Для усиления гетерологичной ассоциации применяли технологию «Knobs-into-Holes» («выступы-во-впадины») для константной области Н-цепи антитела. Технология «Knobs-into-Holes» представляет собой метод, позволяющий получать представляющие интерес гетеродимеризованные антитела посредством усиления гетеродимеризации Н-цепей путем замены боковой цепи аминокислоты, присутствующей в СН3-области одной из Н-цепей, на более крупную боковую цепи («выступ») и замены боковой цепи аминокислоты в СН3-области другой Н-цепи на меньшую боковую цепь («впадина») так, чтобы «выступ» помещался во «впадину» (Burmeister, Nature, 372, 1994, сс. 379-383). Далее в контексте настоящего описания константную область, в которую интродуцирована модификация, приводящая к образованию «выступа», обозначают как Кп, а константную область, в которую интродуцирована модификация, приводящая к образованию «впадины», обозначают Hl. Кроме того, модификации, описанные в WO 2011/108714, применяли для снижения связывания с Fcy. В частности, в IgG1-тип и IgG4-тип интродуцировали модификации, приводящие к замене на Ala аминокислот в положениях 234, 235 и 297 (EU-нумерация). В IgG2-тип интродуцировали модификации, приводящие к замене на Ala аминокислот в положении 234, 237 и 297. Gly в положении 446 и Lys в положении 447 (EU-нумерация) удаляли из С-концов Н-цепей антитела. Для дополнительного облегчения очистки после экспрессии антитела добавляли гистидиновую метку к С-концу Н-цепи антитела к человеческому GPC3, а FLAG-метку добавляли к С-концу Н-цепи антитела к мышиному CD137. Н-цепи антитела к

человеческому GPC3, полученные путем интродукции указанных выше модификаций, представляли собой GC33(2)H-G1dKnHS (SEQ ID NO: 39), GC33(2)H-G2dmKnHS (SEQ ID NO: 40) и GC33(2)H-G4dKnHS (SEQ ID NO: 41). Полученные Н-цепи антитела к мышиному CD137 представляли собой 1D8VH-G1dH1FS (SEO ID NO: 42), 1D8VH-G2dmH1FS (SEQ ID NO: 43) и 1D8VH-G4dH1FS (SEQ ID NO: 44). В GC33(2)H-G2dmKnHS и 1D8VH-G2dmH1FS, которые имеют константную область IgG2-типа, только CH1домен и первая половина шарнирной области относились к IgG1-типу. В частности, они содержали, по сравнению с последовательностью СН1 встречающегося в естественных условиях IgG2, Ser в положении 131, Lys в положении 133 и Gly в положениях 137 и 138; а шарнирная область содержала Ser в положении 219 (ЕUнумерация). L-цепи антител GC33(2)L-k0 (SEQ ID NO: 45) и 1D8VL-k0 (SEQ ID NO: 46), как правило, применяли в плече, представляющем собой антитело к человеческому GPC3, и в плече, представляющем собой антитело к мышиному CD137, соответственно. Антитела, имеющие комбинации, представленные в таблице 3, экспрессировали с получением представляющих интерес биспецифических антител. Указанные антитела экспрессировали путем кратковременной экспрессии в клетках FreeStyle293 (фирма Invitrogen) согласно методу, описанному в «1-1». Полученный супернатант культуры вносили на колонку с антителом к FLAG M2 (фирма Sigma) и колонку промывали, после чего элюировали с использованием FLAG-пептида (фирма Sigma) в концентрации 0,1 мг/мл. Содержащую антитело фракцию вносили на колонку HisTrap HP (фирма GE Healthcare) и колонку промывали, после чего элюировали с помощью концентрационного градиента имидазола. Содержащую антитело фракцию концентрировали с помощью ультрафильтрационной мембраны, а затем концентрированный раствор вносили на колонку с Супердекс 200 (фирма GE Healthcare). Собирали только мономерные антитела в элюате с получением очищенных антител.

Таблица 3

30

Название антитела	Ген 1 Н-цепи	Ген I L-цепи	Ген 2 Н-цепи	Ген 2 L-цепи
GPC3 ERY22-1D8	GC33(2)H-G1dKnHS	GC33(2)L-k0	1D8VH-G1dHIFS	1D8VL-k0
GPC3 ERY22-G2-1D8	GC33(2)H-G2dmKnHS	GC33(2)L-k0	1D8VH-G2dmHIFS	1D8VL-k0
GPC3 ERY22-G4-1D8	GC33(2)H-G4dKnHS	GC33(2)L-k0	1D8VH-G4dHIFS	1D8VL-k0

2-2. Оценка in vitro GPC3-зависимого агонистического действия в отношении CD137 биспецифических антител к человеческому GPC3/к мышиному CD137

Мышиную Т-клеточную линию СТLL-2 (АТСС каталожный №. ТIВ-214) суспендировали в содержащей 10% FBS среде RPMI1640, дополненной 0,5 мкг/мл иономицина и 10 нг/мл ФМА, и клетки высевали в 96-луночный планшет с плотностью 2×10⁴ клеток/100 мкл/лунку. Экспрессирующие человеческий GPC3 клетки мышиного рака легкого линии LLC-GPC3 (приведенный для справки пример 3) суспендировали в такой же среде и высевали в такой же 96-луночный планшет с плотностью 2×10⁴ клеток/ 100 мкл/лунку. Кроме того, получали суспензии каждой клеточной линии, содержащие одинаковое количество клеток CTLL-2 или LLC-GPC3, и затем клетки высевали в 96-луночный планшет с плотностью 4×10⁴ клеток/100 мкл/лунку. В лунки добавляли биспецифическое антитело к человеческому GPC3/к мышиному CD137 в виде человеческого антитела IgG1-типа с чрезвычайно низкой способностью связываться с FcγR (GPC3 ERY22-1D8) или моноспецифическое антитело к человеческому GPC3 в виде человеческого антитела IgG-типа (GC33(2)-hG1S, содержащего GC33(2)H2-G1dS nGC33 (2)L2-к0), в концентрации 5 мкг/мл и клетки культивировали в следующих условиях: 37°С и 5% CO₂ в течение 24 ч. Собирали супернатант культуры и определяли

концентрацию мышиного IFN-ү в супернатанте с помощью ELISA для оценки активации CTLL-2. ELISA осуществляли согласно инструкциям производителя, прилагаемым к набору (фирма PeproTech).

В результате установлено, что высокие уровни накопления мышиного IFN-γ обнаружены только в условиях, в которых присутствовали и клетки линии LLC-GPC3, и клетки линии CTLL-2 (фиг. 4). На основе этого результата можно предположить, что активация Т-клеток происходила в зависимости от ассоциации с CD137 на Т-клетках, обусловленной несколькими различными биспецифическими антителами, связывающимися с экспрессирующими GPC3 клетками (фиг. 3).

Кроме того, на фиг. 5 продемонстрировано наличие активности у биспецифических антител, Fc-область которых заменена на область человеческого IgG2-типа (GPC3 ERY22-G2-1D8) или человеческого IgG4-типа (GPC3 ERY22-G4-1D8), с чрезвычайно низкой способностью связываться с FcγR. Изменение подкласса антитела не приводило к каким-либо значительным изменениям в агонистической активности в отношении CD137.

Эти результаты подтверждают, что биспецифические антитела против ракового антигена (GPC3 в настоящих примерах) и CD137 с пониженной способностью связываться с FcγR обладают агонистической активностью после ассоциации с CD137 на Т-клетках только, когда присутствуют экспрессирующие раковый антиген клетки (раковые клетки и т.п.). Более конкретно, Т-клетки не активируются в здоровых тканях, в которых раковый антиген отсутствует, и это позволяет снижать или элиминировать побочные действия.

Пример 3. Повышающее действие в отношении Т-клеточной активации смеси биспецифического антитела к человеческому GPC3/к мышиному CD137 и биспецифического антитела к человеческому GPC3/к мышиному CD3

3-1. Концепция

Хотя агонистические антитела к CD137, как известно, обладают противоопухолевым действием в результате активации Т-клеток, это действие, как известно, является невысоким, когда агонистические антитела к CD137 применяют в качестве единственного агента. Таким образом, для повышения способности биспецифических антител к раковому антигену/к CD137 активировать Т-клетки и, как следствие, обладать более сильным противоопухолевым действием, оценивали совместное применение агентов со сходной способностью активировать Т-клетки. Биспецифические антитела к раковому антигену/к CD3 могут перенаправлять Т-клетки к раковому антигену и вызывать опосредуемую Т-клетками цитотоксическую активность в отношении раковых клеток. Однако противоопухолевое действие биспецифических антител к раковому антигену/к CD3 также не является достаточно высоким при их применении в качестве единственных агентов. Таким образом, изучали совместное применение биспецифического антитела к раковому антигену/к CD33 для того, чтобы продемонстрировать их синергетическое действие в отношении способности активировать Т-клетки и в отношении противоопухолевой активности.

3-2. Получение GPC3 ERY22-3-1D8 и GPC3 ERY22-3-2C11

Получали биспецифическое антитело к человеческому GPC3/к мышиному CD137, т.е. GPC3 ERY22-3-1D8, и биспецифическое антитело к человеческому GPC3/к мышиному CD3, т.е. GPC3 ERY22-3-2C11. GPC3 ERY22-3-1D8 получали, добавляя известные специалистам в данной области модификации в константной области биспецифического антитела GPC3 ERY22-1D8, полученного согласно методу, описанному в примере 2-1, для дополнительного упрощения очистки. В частности, GC33(2)H-G1dKnHSG3 (SEQ ID

NO: 48) получали путем добавления известной специалистам в данной области модификации H435R к гену константной области H-цепи антитела к человеческому GPC3 GC33(2)H-G1dKnHS для упрощения очистки. Параллельно получали 1D8VH-G1dH1S (SEO ID NO: 47) путем удаления FLAG-метки из гена константной области Нцепи антитела к мышиному CD137 1D8VH-G1dH1FS. Кроме того, получали 2C11VH-G1dH1S (SEQ ID NO: 50), используя последовательность 2C11VH (SEQ ID NO: 49) в качестве вариабельной области Н-цепи антитела к мышиному CD3. L-цепи GC33(2)Lk0, 1D8VL-k0 и 2C11VL-k0 (SEQ ID NO: 51) антител применяли для плеча, представляющего собой антитело к человеческому GPC3, представляющего собой антитело к мышиному CD137 и представляющего собой антитело к мышиному CD3. соответственно. Антитела, имеющие комбинации, представленные в таблице 4, экспрессировали с получением представляющих интерес биспецифических антител. Указанные антитела кратковременно экспрессировали в клетках FreeStyle293 согласно приведенному для справки примеру 1. Полученный супернатант культур вносили на колонку MabSelect SuRe (фирма GE Healthcare) и колонку промывали, после чего элюировали 50 мМ уксусной кислотой. Содержащую антитело фракцию вносили на колонку HisTrap HP (фирма GE Healthcare) или колонку Ni Сефароза FF (фирма GE Healthcare) и колонку промывали, после чего элюировали имидазолом. Содержащую антитело фракцию концентрировали с помощью ультрафильтрационной мембраны. Затем концентрированный раствор вносили на колонку с Супердекс 200 (фирма GE Healthcare). Собирали только мономерные антитела в элюате с получением очищенных антител.

Таблица 4

25

40

Название антитела	Ген 1 Н-цепи	Ген 1 L-цепи	Ген 2 Н-цепи	Ген 2 L-цепи
GPC3 ERY22-3-1D8	GC33(2)H-G1dKnHSG3	GC33(2)L-k0	1D8VH-G1dHIS	1D8VL-k0
GPC3 ERY22-3-2C11	GC33(2)H-G1dKnHSG3	GC33(2)L-k0	2C11VH-G1dHIS	2C11VL-k0

Кроме того, в качестве применяемого для сравнения контроля получали также антитело GC33(2)-G1dS, которое обладает пониженной способностью связываться с FcγR, а также антитело к человеческому GPC3. GC33(2)-G1dS представляет собой встречающееся в естественных условиях антитело к человеческому GPC3, полученное без применения технологии CrossMab, и оно имеет константную область с пониженной способностью связываться с FcγR. В частности, получали конструкцию GC33(2)H2-G1dS (SEQ ID NO: 53), которая имеет GC33(2)H2 (SEQ ID NO: 52), соответствующую вариабельной области H-цепи антитела, и имеет G1d, с интродуцированными мутациями L234A, L235A и N297A, в качестве константной области H-цепи антитела. GC33(2)L2-k0 (SEQ ID NO: 54) применяли в качестве L-цепи антитела. Экспрессию и очистку осуществляли согласно методу, описанному в приведенном для справки примере 1, с получением GC33(2)H2-G1dS/GC33(2)L2-k0. Далее в контексте настоящего описания антитело для простоты обозначено как GC33(2)-G1dS.

3-3. Оценка in vitro повышающего действия в отношении Т-клеточной активации смеси биспецифического антитела к человеческому GPC3/к мышиному CD137 и биспецифического антитела к человеческому GPC3/к мышиному CD3

Выделяли селезенки из наивных самок мышей линии C57BL/6. Клетки суспендировали в содержащей 10% FBS среде RPMI1640, дополненной 10 нг/мл мышиного IL2, с плотностью 4×10^6 клеток/мл. Кроме того, клетки мышиного колоректального рака, экспрессирующие человеческий GPC3, линии CT26-GPC3 (приведенный для справки пример 3) суспендировали в такой же среде с плотностью 4×10^5 клеток/мл. Смешивали

равные количества каждой клеточной суспензии и смесь высевали в 96-луночный планшет из расчета 100 мкл/лунку. В некоторые лунки дополнительно вносили 0,5 мкг/мл иономицина и 10 нг/мл ФМА. В лунки добавляли биспецифическое антитело к человеческому GPC3/к мышиному CD137 с чрезвычайно низкой способностью связываться с FcүR (GPC3 ERY22-1D8) и биспецифическое антитело к человеческому GPC3/к мышиному CD3 с чрезвычайно низкой способностью связываться с FcүR (GPC3 ERY22-2C11 : GPC3 ERY22-3-2C11, в котором модификацию H435R возвращали к ее исходному состоянию) в концентрации 3 мкг/мл, и клетки культивировали в следующих условиях: 37°С и 5% CO₂ в течение 24 ч. Собирали супернатант культуры и определяли концентрацию мышиного IFN-ү в супернатанте с помощью ELISA для оценки активации селезеночных Т-клеток. ELISA осуществляли согласно инструкциям производителя, прилагаемым к набору (фирма РергоТесh).

В результате установлено (фиг. 6), что 1D8-MB492 и GPC3 ERY22-1D8 обладали индуцирующей IFN-ү активностью при добавлении с иономицином и ФМА. Вероятно, это являлось результатом индукции CD137 в селезеночных Т-клетках в результате стимуляции митогеном и т.п. Кроме того, установлен высокий уровень накопления IFN-ү при применении смеси, содержащей GPC3 ERY22-1D8 и GPC3 ERY22-2C11. Это позволяет предположить, что одновременная стимуляция CD3 и CD137 вызывает сильную Т-клеточную активацию.

Пример 4. Противоопухолевая активность биспецифических антител к человеческому GPC3/к мышиному CD137 и их роль в снижении токсичности для печени

20

45

4-1. Сравнение эффективности в качестве лекарственных средств биспецифических антител к человеческому GPC3/к мышиному CD137 и антител к мышиному CD137

Клетки рекомбинантной линии мышиного колоректального рака CT26-GPC3, которые 25 экспрессируют человеческий GPC3 (приведенный для справки пример 3), помещали в сбалансированный соляной раствор Хэнкса (HBSS) из расчета 5×10^6 клеток/мл, и 200 мкл указанного раствора $(1 \times 10^6 \text{ клеток})$ трансплантировали подкожно в брюшную область мышей линии BALB/c (самки 7-нельного возраста, фирма Charles River Laboratories Japan Inc.). Животных произвольно разделяли на 5 групп по 5 особей в каждой, а затем с помощью внутривенной инъекции вводили в хвостовую вену антитела через 3 дня, 7 дней, 10 дней и 17 дней после трансплантации. Приготавливали препараты биспецифического антитела к человеческому GPC3/к мышиному CD137 (GPC3 ERY22-3-1D8) с концентрацией 0,75 и 0,15 мг/мл в растворителе (водный раствор, содержащий 150 мМ NaCl и 20 мМ His-HCl (рН 6,0) который пропускали через фильтр с размером отверстий 0,22 мкм), и вводили из расчета 10 мл/кг (7,5 и 1,5 мг/кг соответственно). Приготавливали препараты антитела к мышиному CD137 (1D8-MB492) с концентрацией 1,5 и 0,3 мг/мл в растворителе и вводили из расчета 10 мл/кг (15 и 3 мг/кг соответственно). Процент ингибирования роста опухоли (%) определяли на основе объема опухоли, рассчитанного с помощью приведенного ниже уравнения.

Объем опухоли (mm^3) = максимальная ось (mm) × минимальная ось (mm) × минимальная ось (mm) / 2

Процент ингибирования роста опухоли (%) = $[1-(T-T0)/(C-C0)] \times 100$

Т: Средний объем опухоли в каждой группе в каждый момент анализа.

Т0: Средний объем опухоли в каждой группе в первый день введения.

С: Средний объем опухоли в контрольной группе в каждый момент анализа

С0: Средний объем опухоли в контрольной группе в первый день введения. Как продемонстрировано на фиг. 7, во всех группах, которые обрабатывали

антителом, обнаружено сильное противоопухолевое действие с ингибированием роста опухоли на 95% или более. Более конкретно, установлено, что биспецифические антитела к человеческому GPC3/к мышиному CD137 обладали сильным противоопухолевым действием, сходным с действием антител к мышиному CD137, а также обладали сильным противоопухолевым действием при активации CD137 зависимым от ракового антигена образом.

4-2. Снижение повреждения печени при применении биспецифических антител к человеческому GPC3/к мышиному CD137. выявленное на модели, созданной путем подкожной трансплантации клеток CT26-GPC3

10

40

По окончании тестов по изучению эффективности при введении применяемых в качестве лекарственных средств антител животных умерщвляли путем обескровливания под анестезией и выделяли плазму. Плазму применяли для измерения аспартатаминотрансферазы (AST; метод JSCC Transferable), аланинаминотрансферазые (ALT; метод JSCC Transferable) и общего билирубина (TBIL; ферментативный метод) с помощью автоматического анализатора TBA-120FR (фирма Toshiba Medical Systems Corporation). Печень получали в процессе аутопсии, фиксировали в 10%-ном забуференном до нейтрального значения растворе формалина с получением с помощью общепринятых методов тонких срезов залитых в парафин препаратов ткани (гематоксилин-эозин (HE)), и осуществляли гистопатологическую оценку с помощью светового микроскопа. Статистический анализ осуществляли с использованием непараметрического критерия Дуннетта для множественного сравнения с контрольной группой.

В результате установлено, что, как продемонстрировано на фиг. 8-11, в группе, которую обрабатывали антителом к мышиному CD137 (1D8-MB492), уровень AST, ALT и TBIL повышался или имел тенденцию к повышению при всех изученных дозах; и во всех случаях при гистопатологической оценке обнаружено повреждение печени, от слабого до умеренного, такое как дегенерация/некроз и воспаление клеток печени. С другой стороны, в группе, которую обрабатывали биспецифическим антителом к человеческому GPC3/к мышиному CD137 (GPC3 ERY22-3-1D8), не удалось обнаружить изменения уровней AST, ALT и ТВІL в крови, которое могло быть связано с повреждением печени. Слабые с точки зрения гистопатологии дегенерацию/некроз или воспаление клеток печени были обнаружены в двух-трех случаях из пяти в каждой обработанной дозой группе, при этом печеночное нарушение было уменьшено. В одном случае в группе, которую обрабатывали этим же антителом в дозе 3 мг/кг, обнаружено существенное повышение уровней AST и ALT в крови, но при этом не обнаружено изменения уровней TBIL в крови. Поскольку при гистопатологической оценке печени не были обнаружены проявления, позволяющие заподозрить повреждение печени, источник ферментов не рассматривается как принимающий участие в повреждении

Из приведенных выше результатов следует, что биспецифическое антитело к человеческому GPC3/к мышиному CD137 GPC3 ERY22-3-1D8 обладает сильной противоопухолевой активностью, не индуцируя серьезное повреждение печени, которое характерно для описанных к настоящему времени обычных агонистических антител к CD137. Более конкретно, биспецифическое антитело к раковому антигену и CD137 с пониженной способностью связываться с FcγR, и, как предлагается, обладающее зависимой от ракового антигена агонистической активностью в отношении CD137, и обладающее способностью активировать Т-клетки только в опухолях без активации Т-клеток в здоровых тканях, обладает избирательной цитотоксической активностью

в отношении раковых клеток, но без побочных действий, таких как цитотоксичность и высвобождение цитокинов.

Пример 5. Противоопухолевое действие при совместном применении биспецифического антитела к человеческому GPC3/к мышиному CD137 и биспецифического антитела к человеческому GPC3/к мышиному CD3

Клетки мышиного рака легкого линии LLC-GPC3, которые экспрессируют человеческий GPC3 (приведенный для справки пример 3), суспендировали в HBSS из расчета 5×10^6 клеток/мл и 200 мкл суспензии (1×10^6 клеток) трансплантировали подкожно в брюшную область мышей линии C57BL/6N (самки, 6-недельного возраста, фирма Charles River Laboratories Japan Inc.). Через 10 дней после трансплантации животных разделяли на основе данных об объеме опухолей и веса тела на пять групп по пять особей в каждой, а затем вводили антитела с помощью внутривенной инъекции в хвостовую вену через 10 дней, 14 дней и 17 дней после трансплантации. Приготавливали препарат биспецифического антитела к человеческому GPC3/к мышиному CD137 (GPC3 ERY22-3-1D8) с концентрацией 0,5 мг/мл в растворителе (водный раствор, содержащий 150 мМ NaCl и 20 мМ His-HCl (pH 6,0) который пропускали через фильтр с размером отверстий 0,22 мкм), и вводили из расчета 10 мл/кг (5 мг/кг). Приготавливали препарат биспецифического антитела к человеческому GPC3/к мышиному CD3 (GPC3 ERY22-3-2С11) с концентрацией 0,45 мг/мл в растворителе и вводили из расчета 10 мл/кг (4,5 мг/ кг). Кроме того, создавали группу, которой совместно вводили два типа антител. Процент ингибирования роста опухоли (%) определяли на основе объема опухоли, рассчитанного с помощью приведенного ниже уравнения.

Объем опухоли (мм 3) = максимальная ось (мм) × минимальная ось (мм) × минимальная ось (мм) / 2

Процент ингибирования роста опухоли (%) = $[1-(T-T0)/(C-C0)] \times 100$

Т: Средний объем опухоли в каждой группе в каждый момент анализа.

Т0: Средний объем опухоли в каждой группе в первый день введения.

30

С: Средний объем опухоли в контрольной группе в каждый момент анализа

С0: Средний объем опухоли в контрольной группе в первый день введения.

Как продемонстрировано на фиг. 12, процент ингибирования роста опухолей через 23 дня после трансплантации составлял 36% в группе, которой вводили только биспецифическое антитело к человеческому GPC3/к мышиному CD137, и 29% в группе, которой вводили только биспецифическое антитело к человеческому GPC3/к мышиному CD3, но в группе, которой совместно вводили указанные два антитела, обнаружено 100%-ное ингибирование и четко проявлялось синергетическое действие в результате совместного применения.

По окончании тестов по изучению эффективности применяемых в качестве лекарственных средств антител осуществляли анализ параметров функции печени (AST, ALT и TBIL) в плазме и гистопатологический анализ срезов ткани печени с помощью НЕ-окрашивания с применением методов, аналогичных описанным в примере «4-2». Изменения, позволяющие заподозрить повреждение печени, не обнаружены ни в одной из подвергающихся обработке групп.

Таким образом, установлено, что совместное применение биспецифического антитела против ракового антигена и CD137 и биспецифического антитела против ракового антигена и CD3 приводит к одновременной специфической и локальной ассоциации CD137 и CD3 на опухоли и вызывает сильную способность активировать Т-клетки, чего не удается достигать при индивидуальном введении каждого из антител по данным экспериментов in vitro, и при этом достигается противоопухолевое действие, которым

также не обладают индивидуальные агенты in vivo.

5

10

Пример 6. Получение человеческих CD137-связывающих антител из библиотеки человеческих антител с помощью метода фагового дисплея

- 6-1. Получение фаговой дисплейной библиотеки наивных человеческих антител Согласно методам, известным специалистам в данной области, полиА-хвост РНК, полученной из человеческих РВМС, и полиА-хвост поступающих в продажу РНК и т.п. применяли в качестве матрицы для создания фаговой дисплейной библиотеки человеческих антител, экспонирующих Fab-домены последовательностей человеческих антител, которые отличаются друг от друга.
- 6-2. Получение человеческих CD137-связывающих антител из библиотеки наивных человеческих антител с помощью пэннинга с использованием гранул

Антитела, у которых обнаружена антигенсвязывающая активность, отбирали путем скрининга из фаговой дисплейной библиотеки наивных человеческих антител, созданной согласно методу, описанному в примере 6-1. Более конкретно, собирали фаги, презентующие антитела, которые обладали активностью связывания с антигенами, иммобилизованными на гранулах. В качестве антигена применяли биотинилированный человеческий CD137. В частности, пэннинг осуществляли с использованием антигена, фиксированного на магнитных гранулах. В качестве магнитных гранул применяли сенсибилизированные нейтравидином гранулы (сенсибилизированные Sera-Mag SpeedBeads NeutrAvidin) или сенсибилизированные стрептавидином гранулы (Dynabeads M-280 Streptavidin).

Сначала фаги, полученные из Escherichia coli, несущие сконструированные фагмиды для фагового дисплея, очищали с помощью общепринятого метода. Затем получали суспензию фаговой библиотеки, которую подвергали диализу в противотоке ТВЅ. Затем добавляли к суспензии фаговой библиотеки БСА до получения конечной концентрации 4%.

Затем добавляли к образовавшейся суспензии фаговой библиотеки 250 пмолей биотинилированного человеческого CD137, давая суспензии фаговой библиотеки контактировать с человеческим CD137 в течение 60 мин при комнатной температуре. Затем к суспензии фаговой библиотеки добавляли блокированные БСА магнитные гранулы и комплексам человеческий CD137-фаг давали связываться с магнитными гранулами в течение 15 мин при комнатной температуре. Гранулы однократно промывали TBS. Затем к гранулам добавляли 0,5 мл раствора трипсина с концентрацией 1 мг/мл, гранулы суспендировали при комнатной температуре в течение 15 мин и гранулы немедленно отделяли, используя магнитный стенд для сбора суспензии фагов. Собранную суспензию фагов добавляли к 10 мл штамма E.coli ER2738 на логарифмической фазе роста (ОП₆₀₀ от 0,4 до 0,7). E.coli осторожно перемешивали и инкубировали при 37°С в течение 1 ч, давая фагам инфицировать E.coli. Инфицированные E.coli высевали в планшет (225 мм × 225 мм). Затем фаги собирали из культуральной среды, засеянной E.coli, с получением суспензии фаговой библиотеки.

Во втором раунде пэннинга осуществляли обогащение фагов, обладающих способностью связываться с человеческим CD137. К полученной суспензии фаговой библиотеки добавляли 100 пмолей биотинилированного человеческого CD137 и давали суспензии фаговой библиотеки контактировать с человеческим CD137 в течение 60 мин при комнатной температуре. Затем к суспензии фаговой библиотеки добавляли блокированные БСА магнитные гранулы и комплексам человеческий CD137-фаг давали связываться с магнитными гранулами в течение 15 мин при комнатной температуре. Гранулы трижды промывали TBST (TBS, содержащий 0,1% Твин20). Затем к гранулам

добавляли 0.5 мл раствора трипсина с концентрацией 1 мг/мл, гранулы суспендировали при комнатной температуре в течение 15 мин и гранулы немедленно отделяли, используя магнитный стенд для сбора суспензии фагов. Собранную суспензию фагов добавляли к 10 мл штамма E.coli ER2738 на логарифмической фазе роста ($O\Pi_{600}$ от 0.4 до 0.7).

Е.coli осторожно перемешивали и инкубировали при 37°C в течение 1 ч, давая фагам инфицировать E.coli. Инфицированные E.coli высевали в планшет (225 мм × 225 мм). Затем фаги собирали из культуральной среды, засеянной E.coli, с получением суспензии фаговой библиотеки.

Пэннинг, предназначенный для получения антител, которые обладают способностью связываться с человеческим CD137, повторяли трижды, применяя такую же процедуру. Четвертый пэннинг осуществляли, используя 40 пмолей биотинилированного человеческого CD137.

6-3. Конструирование фаговой дисплейной библиотеки синтетических человеческих антител

15

25

Фаговую дисплейную библиотеку синтетических человеческих антител конструировали с помощью метода, известного специалистам в данной области, применяя 10 типов последовательностей зародышевой линии тяжелых цепей и 7 типов последовательностей зародышевой линии легких цепей. Частоту встречаемости в популяции человеческих В-клеток и физико-химические свойства семейства вариабельных областей применяли в качестве индикаторов для отбора VH1-2, VH1-69, VH3-23, VH3-66, VH3-72, VH4-59, VH4-61, VH4-b, VH5-51, VH6-1, V κ 1-39, V κ 2-28, V κ 3-20, V κ 1-40, V κ 1-44, V κ 2-14 и V κ 3-21 для применения в качестве последовательной зародышевых линий. Антигенраспознающие сайты в библиотеке синтетических антител диверсифицировали, имитируя популяции человеческих антител, синтезируемых В-клетками.

6-4. Получение человеческих CD137-связывающих антител из библиотеки синтетических человеческих антитела с помощью пэннинга с использованием гранул Антитела, у которых обнаружена антигенсвязывающая активность, отбирали путем

скрининга из фаговой дисплейной библиотеки синтетических человеческих антител, созданной согласно методу, описанному в примере 6-3. Более конкретно, собирали фаги, презентующие антитела, обладающие активностью связывания с антигенами, иммобилизованными на гранулах. В качестве антигена применяли биотинилированный человеческий CD137.

Фаги, полученные из Escherichia coli, несущие сконструированные фагмиды для фагового дисплея, очищали с помощью общепринятого метода. Популяцию фагов осаждали из культуральной среды E.coli, применяемой для получения фагов, путем добавления 2,5М NaCl/10% ПЭГ. Затем осадок разводили ТВS с получением суспензии фаговой библиотеки. Затем добавляли к суспензии фаговой библиотеки БСА до получения конечной концентрации 4%.

Пэннинг осуществляли с использованием антигена, иммобилизованного на магнитных гранулах. В качестве магнитных гранул применяли сенсибилизированные нейтравидином гранулы (сенсибилизированные Sera-Mag SpeedBeads NeutrAvidin) или сенсибилизированные стрептавидином гранулы (Dynabeads M-280 Streptavidin).

Затем добавляли к образовавшейся суспензии фаговой библиотеки 250 пмолей биотинилированного человеческого CD137, давая суспензии фаговой библиотеки контактировать с человеческим CD137 в течение 60 мин при комнатной температуре. Затем к суспензии фаговой библиотеки добавляли блокированные БСА магнитные гранулы и комплексам человеческий CD137-фаг давали связываться с магнитными гранулами в течение 15 мин при комнатной температуре. Гранулы однократно

промывали ТВЅ. Затем к гранулам добавляли 0,5 мл раствора трипсина с концентрацией 1 мг/мл, гранулы суспендировали при комнатной температуре в течение 15 мин и гранулы немедленно отделяли, используя магнитный стенд для сбора суспензии фагов. Собранную суспензию фагов добавляли к 10 мл штамма E.coli ER2738 на логарифмической фазе роста (ОП₆₀₀ от 0,4 до 0,7). E.coli перемешивали и инкубировали при 37°С в течение 1 ч, давая фагам инфицировать E.coli. Инфицированные E.coli высевали в планшет (225 мм × 225 мм). Затем фаги собирали из культуральной среды, засеянной E.coli, с получением суспензии фаговой библиотеки.

На втором раунде пэннинга осуществляли обогащение фагов, обладающих способностью связываться с человеческим CD137. К полученной суспензии фаговой библиотеки добавляли 100 пмолей биотинилированного человеческого CD137 и давали суспензии фаговой библиотеки контактировать с человеческим CD137 в течение 60 мин при комнатной температуре. Затем к суспензии фаговой библиотеки добавляли блокированные БСА магнитные гранулы и комплексам человеческий CD137-фаг давали связываться с магнитными гранулами в течение 15 мин при комнатной температуре. Гранулы трижды промывали TBST и дважды TBS. Затем к гранулам добавляли 0,5 мл раствора трипсина с концентрацией 1 мг/мл, гранулы суспендировали при комнатной температуре в течение 15 мин и гранулы немедленно отделяли, используя магнитный стенд для сбора суспензии фагов. Собранную суспензию фагов добавляли к 10 мл штамма E.coli ER2738 на логарифмической фазе роста (О Π_{600} от 0,4 до 0,7). E.coli осторожно перемешивали и инкубировали при 37°C в течение 1 ч, давая фагам инфицировать E.coli. Инфицированные E.coli высевали в планшет (225 мм × 225 мм). Затем фаги собирали из культуральной среды, засеянной E.coli, с получением суспензии фаговой библиотеки.

Пэннинг, предназначенный для получения антител, которые обладают способностью связываться с человеческим CD137, повторяли трижды, применяя такую же процедуру. Четвертый пэннинг осуществляли, используя 40 пмолей биотинилированного человеческого CD137.

6-5. Оценка способности связываться с человеческим CD137 с помощью ELISA, предназначенного для анализа фагов

Из единичных колоний E.coli, полученных с помощью метода пэннинга, который описан в приведенных выше примерах, собирали содержащие фаги супернатанты культуры с помощью общепринятого метода (Methods Mol. Biol. 178, 2002, сс. 133-145).

Фаги с добавленным к ним TBS подвергали ELISA, осуществляя описанную ниже процедуру. Титрационные 96-луночные микропланшеты StreptaWell (покрытие стрептавидином) (фирма Roche) сенсибилизировали, используя 100 мкл содержащего TBS меченного биотином антигена (биотинилированный человеческий CD137), при комнатной температуре в течение 1 ч. Затем каждую лунку планшета промывали TBST (TBS, содержащий 0,1% Твин20) для удаления антигена, не связанного с планшетом, лунки блокировали с помощью 250 мкл 2% обезжиренного молока-TBS в течение 1 ч или более. 2% обезжиренное молоко-TBS удаляли, а затем в каждую лунку добавляли полученные фаги. Планшетам давали выстояться при комнатной температуре в течение 1 ч для обеспечения связывания экспонирующих антитело фагов с антигеном в каждой лунке. Затем каждую лунку промывали TBST, в лунки добавляли конъюгированное с HRP антитело к М13 (фирма Amersham Pharmacia Biotech), разведенное TBS, и планшеты инкубировали в течение 1 ч. После промывок с использованием TBST в каждую лунку добавляли только раствор TMB (фирма ZYMED). Хромогенную реакцию в растворе в каждой лунке прекращали, добавляя серную кислоту. Затем оценивали изменение

цвета, измеряя абсорбцию при 450 нм.

Из 192 клонов, подвергнутых ELISA, предназначенного для анализа фагов, идентифицировали множество антител, обладающих активностью в отношении связывания с человеческим CD137. Результаты, полученные с помощью ELISA, предназначенного для анализа фагов, представлены в таблице 5.

Таблица 5

5

10

40

45

Библиотека	Наивная библиотека	Синтетическая библиотека
Количество раундов пэннинга	4	4
Количество клонов, подвергнутых ELISA	96	96
Количество позитивных клонов (абсорбция > 0,2, соотношение абсорбции с антигеном/без антигена > 2)	59	78
Количество последовательностей позитивных клонов	12	17

6-6. Анализ последовательностей антител, которые связываются с биотинилированным человеческим CD137

Из клонов, для которых установлено наличие специфической активности связывания с человеческим CD137 с помощью ELISA, предназначенного для анализа фагов, описанного в примере 6-5, анализировали нуклеотидные последовательности генов, амплифицированные с использованием пар специфических праймеров (SEQ ID NO: 55 и 56 для библиотек наивных человеческих антител и SEQ ID NO: 57 и 56 для библиотек синтетических человеческих антител). Результат анализа подтвердил присутствие нескольких типов последовательностей антител, обладающих активностью в отношении связывания с человеческим CD137.

6-7. Получение антител, связывающихся с человеческим CD137

Из клонов полученных согласно методу, описанному в примере 6-6, для которых установлено наличие активности связывания с меченным биотином человеческим CD137, последовательности вариабельных областей тяжелых цепей и легких цепей 5 клонов, полученных из библиотеки наивных человеческих антител (R1-R5), и 14 клонов, полученных из библиотеки синтетических человеческих антител (R6-R19), связывали с константной областью тяжелой цепи антитела (SEQ ID NO: 58, которая представляет собой последовательность, полученную путем модификации константной области человеческого IgG1) или с последовательностью константной области легкой каппацепи (SEQ ID NO: 59), или с последовательностью константной области легкой лямбдацепи (SEQ ID NO: 60), и затем каждую из них встраивали в плазмиды для экспрессии в животных. Последовательности вариабельных областей тяжелых цепей и легких цепей каждого из клонов представлены в таблице 6.

Стр.: 67

Таблица 6

5

10

15

Название	SEQ ID NO: вариабельной области	SEQ ID NO: вариабельной области
клона	тяжелой цепи	легкой цепи
R1	61	80
R2	62	81
R3	63	82
R4	64	83
R5	65	84
R6	66	85
R7	67	86
R8	68	87
R9	69	88
R10	70	89
R11	71	90
R12	72	91
R13	73	92
R14	74	93
R15	75	94
R16	76	95
R17	77	96
R18	78	97
R19	79	98

Каждое из антител экспрессировали и очищали с помощью метода, описанного в приведенном для справки примере 1. Кроме того, для повышения активирующего Т-клетки действия in vitro антител к человеческому CD137, гены, VH-область которых представлена в таблице 6, связывали с константной областью (SEQ ID NO: 99), которая обладала повышенной способностью связываться с человеческим FcγRIIB, гены встраивали в плазмидный вектор для экспрессии в клетках животных, и антитела экспрессировали и очищали аналогичным методом с получением комбинаций их вариабельных областей в виде комбинаций, представленных в таблице 6.

Пример 7. Анализ эпитопов антител к человеческому CD137

7-1. Получение слитых белков, содержащих фрагментированный человеческий CD137-Fc, и получение антител

Для анализа эпитопа полученных антител к человеческому CD137 получали слитые белки, содержащие фрагментированный человеческий CD137 и Fc-область антитела, в которых фрагментированный человеческий CD137 разделяли на домены на основе структуры, общей со структурой TNFRSF, и структур, образованных с помощью Cys-Cys, которые обозначены как CRD в J Exp Med., 211(7), 30 июня 2014 г., сс. 1433-1448 (таблица 7). Слитый белок фрагментированный человеческий CD137-Fc встраивали в плазмидный вектор для экспрессии в клетках животных с помощью метода, известного специалистам в данной области, получая каждый генный фрагмент с помощью ПЦР из полинуклеотида, кодирующего слитый белок полноразмерный человеческий CD137-Fc (SEQ ID NO: 100), так, чтобы он содержал аминокислотную последовательность, представленную в таблице 7. Слитый белок фрагментированный человеческий СD137-Fc очищали таким же образом, что и антитела, c помощью метода, описанного в приведенном для справки примере 1. Кроме того, в качестве контроля для ELISA получали антитела с помощью метода, описанного в приведенном для справки примере 1, путем включения в плазмидный вектор для экспрессии в клетках животных генов, кодирующих антитело (SEQ ID NO: 101 H-цепи и SEQ ID NO: 102 L-цепи), полученное путем замены константной области H-цепи антитела к человеческому CD137, которое описано в WO 2005/035584 A1 (сокращенно обозначено как B), на константную область с удаленными С-концевыми Gly и Lys в константной области Н-цепи человеческого

IgG1, и кодирующих антитело (SEQ ID NO: 103 Н-цепи и SEQ ID NO: 104 L-цепи), полученное путем замены константной области антитела к человеческому CD137, которое описано в WO2012/145183A3 (сокращенно обозначено как M), на константную область с повышенной способностью связываться с человеческим FcyRIIB.

Таблица 7

5

10

15

20

25

30

Название фрагмен- тированн. человеч. CD137	Аминокислотная последовательность фрагментированного человечесткого CD137	Включен. домены	SEQ ID NO
полнораз- мерный	LQDPCSNCPAGTFCDNNRNQICSPCPPNSFSSAGGQRTCDICRQCKGVFRTRKECSST SNAECDCTPGFHCLGAGCSMCEQDCKQGQELTKKGCKDCCFGTFNDQKRGICRPWTNC SLDGKSVLVNGTKERDVVCGPSPADLSPGASSVTPPAPAREPGHSPQ	CRD1, 2, 3	105
CRD1	LQDPCSNCPAGTFCDNNRNQICSPCPPNSFSSAGGQRTC	CRD1	106
CRD2	SPCPPNSFSSAGGQRTCD1CRQCKGVFRTRKECSSTSNAEC	CRD2	107
CRD3	DCTPGFHCLGAGCSMCEQDCKQGQELTKKGC	CRD3	108
CRD4	KDCCFGTFNDQKRG1CRPWTNCSLDGKSVLVNGTKERDVVCGPSPADLSPGASSVTPP APAREPGHSPQ	CRD4	109
CRD1-3	LQDPCSNCPAGTFCDNNRNQICSPCPPNSFSSAGGQRTCDICRQCKGVFRTRKECSST SNAECDCTPGFHCLGAGCSMCEQDCKQGQELTKKGC	CRD1, 2, 3	110
CRD1-2	LQDPCSNCPAGTFCDNNRNQICSPCPPNSFSSAGGQRTCDICRQCKGVFRTRKECSST SNAEC	CRD1, 2	111
CRD2-4	SPCPPNSFSSAGGQRTCDICRQCKGVFRTRKECSSTSNAECDCTPGFHCLGAGCSMCE QDCKQGQELTKKGCKDCCFGTFNDQKRGICRPWTNCSLDGKSVLVNGTKERDVVCGPS PADLSPGASSVTPPAPAREPGHSPQ	CRD2, 3, 4	112
CRD2-3	SPCPPNSFSSAGGQRTCD1CRQCKGVFRTRKECSSTSNAECDCTPGFHCLGAGCSMCE QDCKQGQELTKKGC	CRD2, 3	113
CRD3-4	DCTPGFHCLGAGCSMCEQDCKQGQELTKKGCKDCCFGTFNDQKRGICRPWTNCSLDGK SVLVNGTKERDVVCGPSPADLSPGASSVTPPAPAREPGHSPQ	CRD3, 4	114

7-2-1. Анализ эпитопов с использованием слитых белков фрагментированный человеческий CD137-Fc

Слитые белки фрагментированный человеческий CD137-Fc, полученные согласно методу, описанному в примере 7-1, применяли для оценки связывания с помощью ELISA для выявления тех сайтов в человеческом CD137, которые связываются антителами (в которых применяют SEQ ID NO: 99 в качестве константной области тяжелой цепи), которые получали согласно методу, описанному выше в примере 6. Например, в случае антитела, которое связывается с доменом 1, можно предположить, что такое антитело должно связываться с содержащими домен 1 слитыми белками фрагментированный человеческий CD137-Fc, но не связываться со слитыми белками фрагментированный человеческий CD137-Fc, которые не содержат домен 1.

7-2-2. Метод ELISA

Слитые белки фрагментированный человеческий CD137-Fc разводили до концентрации 2 мкг/мл в водном растворе карбоната натрия, значение рН которого доводили до 9,6. Добавляли индивидуально в каждую лунку плоскодонного 96-луночного планшета Nunc MaxiSorp (фирма Nunc) по 50 мкл разведенного слитого белка фрагментированный человеческий CD137-Fc. Давали выстояться при 4°С в течение ночи или в течение более продолжительного периода времени, а затем планшету давали выстояться при комнатной температуре в течение 1 ч, чтобы температура планшета полностью

сравнялась с комнатной температурой. Раствор, содержащий слитый белок фрагментированный человеческий CD137-Fc, удаляли путем опрокидывания и каждую лунку промывали трижды, используя 300 мкл промывочного буфера (ТВЅ, содержащий 0,1% Твин20, фирма ТаКаRа). Затем в каждую лунку добавляли по 150 мкл блокирующего буфера (ТВЅ, содержащий 2% БСА) и давали выстояться в течение 1 ч или в течение более продолжительного периода времени. Блокирующий буфер удаляли путем опрокидывания и каждую лунку промывали трижды промывочным буфером, аналогично методу, описанному на предыдущей стадии. Затем в каждую лунку добавляли по 50 мкл раствора антитела, заранее приготовленного путем разведения с помощью TBS до концентрации 10 или 5 мкг/мл. Планшет центрифугировали при скорости 600 об/мин или близкой скорости в течение 1 ч при комнатной температуре для связывания антитела с иммобилизованным антигеном. После удаления раствора антитела путем опрокидывания каждую лунку промывали трижды промывочным буфером, аналогично методу, описанному на предыдущей стадии. В каждую лунку добавляли по 100 мкл раствора вторичного антитела, полученного путем 1000-краткого разведения ТВS, содержащим 0,1% Твин20. В качестве вторичного антитела применяли «ANTIBODY ALKALINE PHOSPHATASE CONJUGATE HUMAN IMMUNOGLOBULIN ABSORBED», т.е. козье антитело к человеческой каппа-цепи, конъюгированное с щелочной фосфатазой, фирмы BIOSOURCE в случае антител, несущих каппа-цепь, и применяли антитело к человеческой легкой цепи, т.е. козье антитело к человеческой легкой лямбда-цепи, конъюгированное с щелочной фосфатазой, фирмы ВЕТНҮL LABORATORIES INC. в случае антител, несущих лямбда-цепь. После осуществления реакции в течение 1 ч путем инкубации при комнатной температуре раствор антитела удаляли путем опрокидывания и каждую лунку промывали трижды промывочным буфером, аналогично методу, описанному на предыдущей стадии. Для осуществления цветной реакции использовали набор BluePhos Microwell фирмы KPL. После завершения хромогенной реакции ее прекращали, используя стоп-раствор АР фирмы КРL, абсорбцию измеряли при 620 нм с помощью абсорциометра. Результаты представлены на фиг. 14. На фиг. 14 продемонстрировано, что каждое антитело характеризовалось разной степенью проявления окрашивания в присутствии соответствующего ему слитого белка фрагментированный человеческий CD137-Fc и связывалось с различным фрагментом слитого белка человеческий CD137-FC. Кроме того, установлено, что полученные

Пример 8. Оценка способности антител к человеческому CD137 активировать Тклетки in vitro

антитела отличались от известных антител В и М.

Т-клетки размножали культивированием из поступающих в продажу PBMC (фирма AllCells), применяя гранулы Dynabead с активатором человеческих Т-клеток CD3/CD28 (фирма Gibco, 11132D). Человеческие Т-клетки суспендировали с плотностью 4×10^5 клеток/мл в среде RPMI1640, содержащей 10% FBS, 60 ед./мл человеческого IL2, 0,5 мкг/мл иономицина, 10 нг/мл Φ MA и пенициллин и стрептомицин в соответствующей концентрации. Кроме того, клетки человеческой В-клеточной лимфомы линии Raji суспендировали в такой же среде с плотностью 4×10^5 клеток/мл. Указанные клеточные суспензии смешивали в равных количествах и высевали в 96-луночный планшет из расчета 100 мкл/лунку. Добавляли связывающие человеческий CD137 антитела, полученные согласно методу, описанному в примере 6 (R1-R19; применяли те же антитела, которые использовали для осуществления анализа методом ELISA, описанным в примере 7) в концентрации 5 мкг/мл и клетки культивировали в следующих условиях:

37°C и 5% CO₂ в течение 3 дней. Собирали супернатант культуры и концентрацию человеческого IFN-γ в супернатанте измеряли с помощью ELISA для оценки активации человеческих Т-клеток. ELISA осуществляли согласно инструкциям, прилагаемым производителем к набору для ELISA (фирма PeproTech).

В результате установлено (фиг. 15), что по сравнению с контрольным человеческим IgG (фирма Allexis, 804-133-C100: hIgG на фиг. 15) клоны, кроме R7 и R15, все обладали индуцирующей IFN-у активностью. Определяли являются ли указанные антитела, обладающие IFN-у-индуцирующей активностью, агонистическими антителами в отношении CD137.

Характеристики полученных антител обобщены на фиг. 16. Получали много антител, которые распознают эпитопы, отличные от эпитопов антител В и М к человеческому СD137, указанных в описанных выше примерах. Указанные антитела к человеческому СD137 модифицировали с получением биспецифических антител с использованием антитела к GC33 (антитело к человеческому GPC3), и оценивали зависимую от их ракового антигена (GPC3) агонистическую активность в отношении CD137. Таким путем можно получать биспецифические антитела к человеческому GPC3/к человеческому CD137, которые обладают требуемыми противоопухолевыми действиями. Пример 9. Получение биспецифического антитела к человеческому GPC3/к мышиному

CD40 (GPC3 FAE-FGK45)

20 Биспецифическое антитело к человеческому GPC3/к мышиному CD40, т.е. GPC3 FAE-FGK45, несущее константные области человеческого IgG1, получали с помощью описанной ниже процедуры. Для плеча, представляющего собой антитело к мышиному CD40, применяли FGK45VH6 (SEQ ID NO: 120) в качестве вариабельной области тяжелой цепи и применяли FGK45VL4 (SEQ ID NO: 121) в качестве вариабельной области легкой цепи. В этом случае F760nG3P17 (SEQ ID NO: 119) и k0 (SEQ ID NO: 118) применяли в качестве константных областей тяжелой и легкой цепей соответственно. Плечо, представляющее собой антитело к GPC3, как правило, несло вариабельную область тяжелой цепи H0000 (SEQ ID NO: 115) и вариабельную область GL4 (SEQ ID NO: 116). В этом случае в качестве константных областей применяли константную область тяжелой цепи F760nN17 (SEQ ID NO: 117), модифицированную так, что в ней присутствовала гетерологическая ассоциация между двумя тяжелыми цепями, и она отличалась пониженной способностью связываться с Гсу-рецептором, и константную область легкой цепи k0 (SEQ ID NO: 118). Указанные антитела экспрессировали следующим методом. Клетки почки человеческого эмбриона, полученные из линии FreeStyle 293-F (фирма Invitrogen), суспендировали в среде для экспрессии FreeStyle 293 (фирма Invitrogen) и высевали с плотностью 1,33×10⁶ клеток/мл. Полученные плазмиды интродуцировали в клетки методом липофекции. Клетки культивировали в течение 4 дней в CO₂-инкубаторе (37°C, 8% CO₂, 90 об/мин) и антитела очищали из супернатантов

культур с помощью rProtein A Sepharose TM Fast Flow (фирма Amersham Biosciences) или Protein G Sepharose 4 Fast Flow (фирма GE HEALTHCARE) с использованием метода, известного специалистам в данной области. Измеряли абсорбцию растворов очищенных антител при 280 нм с использованием спектрофотометра. Концентрации очищенных антител рассчитывали на основе полученных значений, используя коэффициент

молярной экстинкции, рассчитанный с помощью метода PACE (Protein Science 4, 1995, сс. 2411-2423). Каждую из очищенных гомологичных форм смешивали, используя комбинации, представленные в таблице 8, для получения представляющих интерес биспецифических антител с использованием методик, известных специалистам в данной области (WO 2015/046467).

5

Таблица 8

	No	Обозначение клона	Антитело 1	Антитело 2
Ī	1	GPC3 FAE-FGK45	H0000/GL4-F760nN17	FGK45VH6/FGK45VL4-F760nG3P17

Пример 10. Оценка усиливающего действия в отношении активации спленоцитов in vitro с помощью смеси биспецифического антитела к человеческому GPC3/к мышиному CD40 и биспецифичекого антитела к человеческому GPC3/к мышиному CD3

Выделяли селезенку у наивных самок мышей линии Balb/с и ее клетки суспендировали с плотностью 4×10^6 клеток/мл в среде, приготовленной путем добавления мышиного IL2 в концентрации 10 нг/мл к среде RPMI1640, содержащей 10% FBS, 0,5 мкг/мл иономицина и 10 нг/мл Φ MA. Клетки мышиного колоректального рака линии CT26-GPC3, которые экспрессируют человеческий GPC3 (приведенный для справки пример

3), суспендировали также в такой же среде с плотностью 4×10^5 клеток/мл. Эти две клеточные суспензии смешивали в равных количествах и высевали в 96-луночный планшет из расчета 100 мкл/лунку. Биспецифическое антитело к человеческому GPC3/к мышиному CD40 с чрезвычайно низкой способностью связываться с FcүR (GPC3 ERY22-FGK45) добавляли в концентрации 3 мкг/мл, а биспецифическое антитело к человеческому GPC3/к мышиному CD3 с чрезвычайно низкой способностью связываться с FcүR (GPC3 ERY22-2C11) добавляли в концентрации 1 мкг/мл, и клетки культивировали в следующих условиях: 37° C и 5% CO₂ в течение 72 ч. Собирали супернатанты культуры и определяли концентрацию IFN- γ в супернатанте с помощью ELISA для оценки активации Т-клеток, присутствующих в спленоцитах. ELISA осуществляли согласно инструкциям, прилагаемым производителем к набору для ELISA (фирма PeproTech).

В результате установлено (фиг. 17), что хотя антитело GPC3 ERY22-2C11 обладало IFN-γ-индуцирующей активностью при применении в качестве индивидуального агента, для антитела GPC3 ERY22-FGK45 при его применении в качестве индивидуального агента убедительно доказано отсутствие какой-либо активности. Однако при применении смеси GPC3 ERY22-FGK45 и GPC3 ERY22-2C11 установлен высокий уровень накопления IFN-γ. Это позволяет предположить, что одновременное применение CD3 и CD40 стимулирует различные смеси иммунных клеток, приводя к сильной активации Т-клеток.

Пример 11. Получение биспецифических антител к человеческому GPC3/к человеческому CD137 и оценка их агонистической активности

11-1. Получение биспецифических антител к человеческому GPC3/к человеческому CD137

Биспецифические антитела к человеческому GPC3/к человеческому CD137, несущие константные области человеческого IgG1, получали с помощью следующей процедуры. Последовательности (R3 и R5), для которых в примере 7 подтверждена способность связываться с человеческим CD137, модифицировали, используя праймеры, созданные для интродукции произвольных изменений в аминокислотах CDR3 тяжелой цепи. Последовательности вариабельных областей представлены в таблице 9. В этом случае, когда осуществляли модификацию R3 и R5, то последовательность, полученную путем добавления Gly-Lys (обозначают также как «GK») к С-концу последовательности F760nG3P17, сконструированной согласно методу, описанному в примере 9, и последовательность константной области лямбда-цепи (SEQ ID NO: 60) применяли в качестве константной области тяжелой цепи и константной области легкой цепи соответственно. Плечо, представляющее собой антитело к GPC3, как правило, несло вариабельную область тяжелой цепи H0000 (SEQ ID NO: 115) и вариабельную область

GL4 (SEQ ID NO: 116). В этом случае в качестве константных областей применяли константную область тяжелой цепи F760nN17 (SEQ ID NO: 117), модифицированную так, что в ней присутствовала гетерологическая ассоциация между двумя тяжелыми цепями, и она отличалась пониженной способностью связываться с Гсу-рецептором, и константную область легкой цепи k0 (SEQ ID NO: 118). Указанные антитела экспрессировали следующим методом. Клетки почки человеческого эмбриона клетки, полученные из линии FreeStyle 293-F (фирма Invitrogen), суспендировали в среде для экспрессии FreeStyle 293 (фирма Invitrogen) и высевали с плотностью 1,33×10⁶ клеток/ мл. Полученные плазмиды интродуцировали в клетки методом липофекции. Клетки культивировали в течение 4 дней в CO₂-инкубаторе (37°C, 8% CO₂, 90 об/мин) и антитела очищали из супернатантов культур с помощью rProtein A SepharoseTM Fast Flow (фирма Amersham Biosciences) или Protein G Sepharose 4 Fast Flow (фирма GE HEALTHCARE) с использованием метода, известного специалистам в данной области. Измеряли абсорбцию растворов очищенных антител при 280 нм с использованием спектрофотометра. Концентрации очищенных антител рассчитывали на основе полученных значений, используя коэффициент молярной экстинкции, рассчитанный с помощью метода PACE (Protein Science 4, 1995, сс. 2411-2423). Для антител к человеческому CD137 (полученных на основе R3 и R5) расчеты осуществляли с использованием Е1% = 14. Как продемонстрировано в таблице 9, антитело к человеческому GPC и гомологичные формы каждого из антител к человеческому CD137, для очистки которых применяли метод, описанный в примере 9. смешивали с получением представляющих интерес биспецифических антител с использованием методик, известных специалистам в данной области (WO 2015/046467).

Таблица 9

25

30

35

Обозначение образца	Антитело к чел	овеческому CD137			Антитело к человеческому
					GPC3
	Вариабельная	SEQ ID NO:	Вариабельная	SEQ ID NO:	Тяжелая цепь и
	область	вариабельной	область легкой	вариабельной	легкая цепь
	тяжелой цепи	области тяжелой	цепи	области легкой	(описанные в
	<u> </u>	цепи		цепи	примере 9)
GPC3 FAE-	ВН	122	BL	123	H0000/GL4-
BMS		1			F760nN17
BiAb-1	1150313C04	124	BBNM003L01	82	H0000/GL4-
					F760nN17
BiAb-2	2150313B04	125	BBNM005L01	84	H0000/GL4-
					F760nN17

11-2. Оценка in vitro GPC3-зависимого агонистического действия в отношении CD137 биспецифического антитела к человеческому GPC3/к человеческому CD137

Т-клетки размножали культивированием из поступающих в продажу PBMC (фирма AllCells), применяя гранулы Dynabead с активатором человеческих Т-клеток CD3/CD28 (фирма Gibco, 11132D). Человеческие Т-клетки суспендировали с плотностью 4×10⁵ клеток/мл в среде RPMI1640, содержащей 10% FBS, 60 ед./мл человеческого IL2, 0,5 мкг/мл иономицина, 10 нг/мл ФМА и пенициллин и стрептомицин в соответствующей концентрации. Кроме того, клетки мышиного колоректального рака линии CT26-GPC3, которые экспрессируют человеческий GPC3 (приведенный для справки пример 3),

суспендировали в такой же среде с плотностью 4×10^5 клеток /мл. Указанные две клеточные суспензии смешивали в равных количествах и высевали в 96-луночный планшет из расчета 100 мкл/лунку. Добавляли контрольный человеческий IgG (фирма Allexis, 804-133-C100: Ctrl hIgGl на фиг. 18) или антитело GPC3 FAE-BMS, полученное

согласно методу, описанную в представленном выше примере 11-1 (биспецифическое антитело к человеческому GPC3/к человеческому CD 137 с чрезвычайной низкой способностью связываться с $Fc\gamma R$), в концентрации 10 мкг/мл и клетки культивировали в следующих условиях: $37^{\circ}C$ и 5% CO₂ в течение 3 дней. Собирали супернатант культуры и концентрацию человеческого IFN- γ в супернатанте измеряли с помощью ELISA для оценки активации T-клеток. ELISA осуществляли согласно инструкциям, прилагаемым производителем к набору для ELISA (фирма PeproTech).

В результате установлено (фиг. 18), что биспецифическое антитело к человеческому GPC3/к человеческому CD137 обладает LFN-у-индуцирующей активностью. Это позволяет предположить, что и в человеческих Т-клетках стимуляция CD137 приводит к сильной активации Т-клеток, аналогично тому, что установлено при применении мышиных Т-клеток, которые использовали в примере 2.

11-3. Оценка in vitro GPC3-зависимого агонистического действия в отношении CD137 биспецифического антитела к человеческому GPC3/к человеческому CD137

Человеческий CD137 экспрессируется также в B-клеточной линии HDML-2, и агонистическую активность в отношении CD137 можно оценивать также с использованием HDML-2. Клетки человеческого B-клеточного рака линии HDLM-2 суспендировали с плотностью 8×10^5 клеток/мл в среде RPMI1640, содержащей 20% FBS и пенициллин-стрептомицин в соответствующей концентрации. Кроме того, клетки мышиного колоректального рака линии CT26-GPC3, которые экспрессируют человеческий GPC3 (приведенный для справки пример 3) суспендировали в такой же среде с плотностью 4×10^5 клеток /мл. Указанные две клеточные суспензии смешивали в равных количествах и высевали в 96-луночный планшет из расчета 100 мкл/лунку. Добавляли контрольный человеческий IgG (фирма Allexis, 804-133-C100: Ctrl hIgG1 на фиг. 19) или биспецифическое антитело к человеческому GPC3/к человеческому CD137 с чрезвычайной низкой способностью связываться с Fc γ R, полученное согласно методу, описанному в представленном выше примере 11-1, в концентрации 10 мкг/мл и клетки культивировали в следующих условиях: 37°C и 5% CO $_2$ в течение 3 дней. Собирали

супернатант культуры и концентрацию человеческого IL-6 в супернатанте измеряли с помощью ELISA для оценки активации B-клеток. ELISA осуществляли согласно инструкциям, прилагаемым производителем к набору для ELISA (фирма PeproTech).

В результате установлено (фиг. 19), что биспецифическое антитело к человеческому GPC3/к человеческому CD137 обладает IL-6-индуцирующей активностью. Это свидетельствует о том, что стимуляцию CD137 можно оценивать также с использованием человеческих В-клеток таким же методом, который применяли для мышиных Т-клеток в примере 2 и человеческих Т-клеток в примере 11-2.

В примерах 11-2 и 11-3 продемонстрировано, что, аналогично результатам, полученным в примерах 2-5, в которых использовали мышиный CD137, биспецифические антитела обладают агонистической активностью в отношении человеческого CD137, и что, вероятно, человеческий CD137 может обладать такими же действиями, что и мышиный CD137.

Промышленная применимость

15

В настоящем изобретении предложены новые антигенсвязывающие молекулы или фармацевтические композиции, обладающие высокой безопасностью, очень высокой противоопухолевой активностью и не обладающие токсичностью, обусловленной повреждением здоровых тканей или цитокиновым «штормом», независимым от ракового антигена образом. Фармацевтические композиции, содержащие антигенсвязывающую

молекулу, предлагаемую в настоящем изобретении, в качестве действующего вещества, активируют иммунные клетки зависимым от ракового антигена образом и осуществляют цитотоксические действия, направленные на различные клетки, включая раковые клетки. Это обеспечивает возможность лечения или предупреждения различных видов рака.

5 Настоящее изобретение может не только обеспечивать малоопасное лечение, но также снижать физическую нагрузку и повышать удобство лечения, что является желательным для пациентов.

```
ПЕРЕЧЕНЬ ПОСЛЕДОВАТЕЛЬНОСТЕЙ
     <110> ЧУГАИ СЕИЯКУ КАБУШИКИ КАИША
     <120> Иммуноактивирующая антигенсвязывающая молекула
10
     <130> C1-A1401Y1P
     <140> PCT/JP2015/060794
     <141> 2015-04-07
     <150> JP 2014-078457
     <151> 2014-04-07
15
     <150> JP 2014-264589
     <151> 2014-12-26
     <160> 125
     <170> PatentIn, верся 3.5
     <210> 1
20
     <211> 330
     <212> PRT
     <213> Homo sapiens
     Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys
25
                      5
                                          10
     Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr
                                      25
     Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser
                                  40
                                                      45
30
     Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser
          50
                              55
                                                  60
     Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr
                          70
                                              75
35
     Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys
                                          90
     Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys
                  100
                                      105
                                                          110
     Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro
             115
                                  120
                                                      125
40
     Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys
                              135
                                                  140
     Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp
                          150
                                              155
     Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu
45
                      165
                                          170
                                                              175
     Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu
                  180
                                      185
                                                          190
```

	His	Gln	Asp 195	Trp	Leu	Asn	Gly	Lys 200	Glu	Tyr	Lys	Cys	Lys 205	Val	Ser	Asn
	Lys	Ala 210	Leu	Pro	Ala	Pro	Ile 215	Glu	Lys	Thr	Ile	Ser 220	Lys	Ala	Lys	Gly
5	Gln 225	Pro	Arg	Glu	Pro	Gln 230	Val	Tyr	Thr	Leu	Pro 235	Pro	Ser	Arg	Asp	Glu 240
	Leu	Thr	Lys	Asn	Gln 245	Val	Ser	Leu	Thr	Cys 250	Leu	Val	Lys	Gly	Phe 255	Tyr
10	Pro	Ser	Asp	Ile 260	Ala	Val	Glu	Trp	Glu 265	Ser	Asn	Gly	Gln	Pro 270	Glu	Asn
	Asn	Tyr	Lys 275	Thr	Thr	Pro	Pro	Val 280	Leu	Asp	Ser	Asp	Gly 285	Ser	Phe	Phe
	Leu	Tyr 290	Ser	Lys	Leu	Thr	Val 295	Asp	Lys	Ser	Arg	Trp 300	Gln	Gln	Gly	Asn
15	Val 305	Phe	Ser	Cys	Ser	Val 310	Met	His	Glu	Ala	Leu 315	His	Asn	His	Tyr	Thr 320
	Gln	Lys	Ser	Leu	Ser 325	Leu	Ser	Pro	Gly	Lys 330						
20	<210 <211	0> 2 1> 3														
	<212	2>]	PRT													
	<213	3> 1	Homo	sapi	iens											
	<400	0> 2	2													
	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe	Pro	Leu	Ala	Pro	Cys	Ser	Arg
25	1				5					10					15	
	Ser	Thr	Ser	Glu 20	Ser	Thr	Ala	Ala	Leu 25	Gly	Cys	Leu	Val	Lys 30	Asp	Tyr
	Phe	Pro	Glu 35	Pro	Val	Thr	Val	Ser 40	Trp	Asn	Ser	Gly	Ala 45	Leu	Thr	Ser
30	Gly	Val 50	His	Thr	Phe	Pro	Ala 55	Val	Leu	Gln	Ser	Ser 60	Gly	Leu	Tyr	Ser
	Leu 65	Ser	Ser	Val	Val	Thr 70	Val	Pro	Ser	Ser	Asn 75	Phe	Gly	Thr	Gln	Thr 80
35	Tyr	Thr	Cys	Asn	Val 85	Asp	His	Lys	Pro	Ser 90	Asn	Thr	Lys	Val	Asp 95	Lys
	Thr	Val	Glu	Arg 100	Lys	Cys	Cys	Val	Glu 105	Cys	Pro	Pro	Cys	Pro 110	Ala	Pro
	Pro	Val	Ala 115	Gly	Pro	Ser	Val	Phe 120	Leu	Phe	Pro	Pro	Lys 125	Pro	Lys	Asp
40	Thr	Leu 130	Met	Ile	Ser	Arg	Thr 135	Pro	Glu	Val	Thr	Cys 140	Val	Val	Val	Asp
	Val 145	Ser	His	Glu	Asp	Pro 150	Glu	Val	Gln	Phe	Asn 155	Trp	Tyr	Val	Asp	Gly 160
45	Val	Glu	Val	His	Asn 165	Ala	Lys	Thr	Lys	Pro 170	Arg	Glu	Glu	Gln	Phe 175	Asn
	Ser	Thr	Phe	Arg 180	Val	Val	Ser	Val	Leu 185	Thr	Val	Val	His	Gln 190	Asp	Trp
	Leu	Asn	Gly	Lys	Glu	Tyr	Lys	Cys	Lys	Val	Ser	Asn	Lys	Gly	Leu	Pro

			195					200					205			
	Ala	Pro		Glu	Lys	Thr	Ile	Ser	Lys	Thr	Lys	Gly	Gln	Pro	Arg	Glu
	4	210					215					220				
	Pro (Gln	Val	Tyr	Thr	Leu	Pro	Pro	Ser	Arg	Glu	Glu	Met	Thr	Lys	Asn
5	225					230					235					240
	Gln V	Val	Ser	Leu	Thr	Cys	Leu	Val	Lys	Gly	Phe	Tyr	Pro	Ser	Asp	Ile
					245					250					255	
	Ala V	Val	Glu	-	Glu	Ser	Asn	Gly		Pro	Glu	Asn	Asn	-	Lys	Thr
		_	_	260	_	_	~	_	265	~	-1		_	270	~	_
10	Thr 1	Pro		Met	Leu	Asp	Ser	_	GTA	Ser	Phe	Phe		Tyr	Ser	Lys
	Tou	Πh ν	275	7 00	T 110	Cor	7 ~~	280	Cln	Cln	C1.,	7 an	285	Dho	Cor	C**C
	Leu '	290	Val	Asp	ьуѕ	ser	295	пр	GIII	GIII	GIY	300	Val	Pne	ser	Cys
	Ser V		Met	His	G] 11	Ala		His	Asn	His	Tur		Gln	Lvs	Ser	T.e11
15	305	vai	1100	1110	Olu	310	деа	1110	11011	1110	315		0111	Lyo	DCI	320
	Ser I	Leu	Ser	Pro	Gly	Lys										
					325	_										
	<210	> 3	3													
	<2112	> 3	377													
20	<212	> E	PRT													
	<2132	> F	Homo	sapi	lens											
	<4002															
	Ala	Ser	Thr	Lys		Pro	Ser	Val	Phe		Leu	Ala	Pro	Cys		Arg
	1	1	~	~ 3	5				_	10	~	_		_	15	_
25	Ser 5	'l'hr	Ser	G1y 20	GIY	Thr	Ala	Ala	Leu 25	GIY	Cys	Leu	Val	Lys	Asp	Tyr
	Phe 1	Pro	G111		Val	Thr	Val	Sar		Δen	Sar	Gl v	Δla		Thr	Sar
	1110	110	35	110	Vai	1111	Vai	40	TIP	11011	DCI	Oly	45	шси	1111	DCI
	Gly V	Val		Thr	Phe	Pro	Ala		Leu	Gln	Ser	Ser		Leu	Tyr	Ser
30		50					55					60	_		-	
	Leu S	Ser	Ser	Val	Val	Thr	Val	Pro	Ser	Ser	Ser	Leu	Gly	Thr	Gln	Thr
	65					70					75					80
	Tyr :	Thr	Cys	Asn	Val	Asn	His	Lys	Pro	Ser	Asn	Thr	Lys	Val	Asp	Lys
					85					90					95	
35	Arg V	Val	Glu		Lys	Thr	Pro	Leu		Asp	Thr	Thr	His		Cys	Pro
		~	_	100	_	_	~	~	105		_	_	_	110	_	_
	Arg (Cys	Pro 115	Glu	Pro	Lys	Ser	Cys 120	Asp	Thr	Pro	Pro	Pro 125	Cys	Pro	Arg
	Cys 1	Dro		Dro	T. 170	Sar	C 17 C		Thr	Dro	Dro	Dro		Dro	Δκα	C 17 C
40	_	130	Olu	110	цуб	DCI	135	7150	1111	110	110	140	СуБ	110	71 <u>1</u> 9	СуБ
	Pro (Pro	Lvs	Ser	Cvs		Thr	Pro	Pro	Pro		Pro	Ara	Cvs	Pro
	145			-		150	-				155	_		,	-	160
	Ala	Pro	Glu	Leu	Leu	Gly	Gly	Pro	Ser	Val	Phe	Leu	Phe	Pro	Pro	Lys
					165					170					175	
45	Pro 1	Lys	Asp	Thr	Leu	Met	Ile	Ser	Arg	Thr	Pro	Glu	Val	Thr	Cys	Val
				180					185					190		
	Val V	Val	_	Val	Ser	His	Glu	_	Pro	Glu	Val	Gln		Lys	Trp	Tyr
			195					200					205			

```
Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu
         210
                             215
                                                220
     Gln Tyr Asn Ser Thr Phe Arg Val Val Ser Val Leu Thr Val Leu His
                         230
                                             235
     Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
5
                     245
                                         250
     Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln
                 260
                                     265
     Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met
            275
                                280
                                                     285
10
     Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro
                            295
     Ser Asp Ile Ala Val Glu Trp Glu Ser Ser Gly Gln Pro Glu Asn Asn
                                             315
     305
                         310
15
     Tyr Asn Thr Thr Pro Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu
                     325
                                         330
     Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Ile
                 340
                                    345
     Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn Arg Phe Thr Gln
20
            355
                                 360
                                                    365
     Lys Ser Leu Ser Leu Ser Pro Gly Lys
        370
                             375
     <210> 4
     <211> 327
     <212> PRT
25
     <213> Homo sapiens
     Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg
                    5
                                         10
     Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr
30
                                     25
     Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser
                                 40
     Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser
35
                             55
     Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Lys Thr
                         70
                                             75
     Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys
                                         90
     Arg Val Glu Ser Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro Ala Pro
40
                100
                                    105
     Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys
             115
                                 120
     Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val
                            135
                                                 140
45
     Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp
                        150
                                            155
     Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe
```

				165					170					175	
	Asn Sei	Thr	Tyr	Arg	Val	Val	Ser	Val	Leu	Thr	Val	Leu	His	Gln	Asp
			180					185					190		
	Trp Let	ı Asn	Gly	Lys	Glu	Tyr	Lys	Cys	Lys	Val	Ser	Asn	Lys	Gly	Leu
5		195					200					205			
	Pro Se	s Ser	Ile	Glu	Lys	Thr	Ile	Ser	Lys	Ala	Lys	Gly	Gln	Pro	Arg
	210)				215					220				
	Glu Pro	Gln	Val	Tyr	Thr	Leu	Pro	Pro	Ser	Gln	Glu	Glu	Met	Thr	Lys
	225				230					235					240
10	Asn Gl	n Val	Ser		Thr	Cys	Leu	Val	_	Gly	Phe	Tyr	Pro		Asp
				245					250					255	
	Ile Ala	a Val		Trp	Glu	Ser	Asn		Gln	Pro	Glu	Asn		Tyr	Lys
			260					265					270		
	Thr Th		Pro	Val	Leu	Asp		Asp	Gly	Ser	Phe		Leu	Tyr	Ser
15		275	_				280					285			
	Arg Let		Val	Asp	Lys		Arg	Trp	GIn	Glu		Asn	Val	Phe	Ser
	290		M - +	77.5	Q1	295	T	TT -	7	TT -	300	m1	Q1	T	0
	Cys Sei	r val	мес	HIS	310	Ата	ьеи	HIS	ASII		TÀL	THE	GIN	гуѕ	
20	305	. T.011	Cor	T 011		T 170				315					320
20	Leu Se	. шеи	ser	325	GTĀ	цуѕ									
	<210>	5		323											
	<211>	330													
	<212>	PRT													
25	<213>	Иску	CCTB	енная	Ŧ										
25			CCTB	енная	Ŧ										
25	<213>					resnj	рован	ная	посл	педон	зател	льно(СТЬ		
25	<213> <220>	Иску				resnļ	рован	кьнн	посл	тедон	вател	тьнос	СТЬ		
25	<213> <220> <223>	Иску иску 5	CCTB	Энно	СИН									Ser	Lys
25 30	<213> <220> <223> <400> Ala Sei	Иску иску 5 Thr	сстве Lys	енно Gly 5	син	Ser	Val	Phe	Pro	Leu	Ala	Pro	Ser	15	
	<213> <220> <223> <400> Ala Ser	Иску иску 5 Thr	сстве Lys	енно Gly 5	син	Ser	Val	Phe	Pro	Leu	Ala	Pro	Ser	15	
	<213> <220> <223> <400> Ala Sei	Иску иску 5 Thr	сстве Lys	енно Gly 5	син	Ser	Val	Phe	Pro	Leu	Ala	Pro	Ser	15	
	<213> <220> <223> <400> Ala Sei	Иску иску 5 Thr Ser	Lys Gly 20	Энно Gly 5 Gly	син: Pro Thr	Ser Ala	Val Ala Ser	Phe Leu 25	Pro 10 Gly	Leu Cys	Ala Leu	Pro Val	Ser Lys 30	15 Asp	Tyr
	<213> <220> <223> <400> Ala Ser Ser Thr	Иску иску 5 Thr Ser Glu 35	Lys Gly 20 Pro	Gly 5 Gly Val	Синт Pro Thr	Ser Ala Val	Val Ala Ser 40	Phe Leu 25 Trp	Pro 10 Gly Asn	Leu Cys Ser	Ala Leu Gly	Pro Val Ala 45	Ser Lys 30 Leu	15 Asp Thr	Tyr Ser
	<213> <220> <223> <400> Ala Ser The Phe Pro	Иску иску 5 Thr Ser Glu 35	Lys Gly 20 Pro	Gly 5 Gly Val	Синт Pro Thr	Ser Ala Val	Val Ala Ser 40	Phe Leu 25 Trp	Pro 10 Gly Asn	Leu Cys Ser	Ala Leu Gly Ser	Pro Val Ala 45	Ser Lys 30 Leu	15 Asp Thr	Tyr Ser
30	<213> <220> <223> <400> Ala Ser Ser Thr Phe Pro Gly Val 50	Иску иску 5 Thr Ser O Glu 35 L His	Lys Gly 20 Pro	Gly 5 Gly Val	Pro Thr Thr	Ser Ala Val Ala 55	Val Ala Ser 40 Val	Phe Leu 25 Trp Leu	Pro 10 Gly Asn	Leu Cys Ser	Ala Leu Gly Ser	Pro Val Ala 45 Gly	Ser Lys 30 Leu Leu	15 Asp Thr	Tyr Ser Ser
30	<213> <220> <223> <400> Ala Ser The Phe Pro Gly Val 50 Leu Ser	Иску иску 5 Thr Ser O Glu 35 L His	Lys Gly 20 Pro	Gly 5 Gly Val	Pro Thr Thr Pro	Ser Ala Val Ala 55	Val Ala Ser 40 Val	Phe Leu 25 Trp Leu	Pro 10 Gly Asn	Leu Cys Ser Ser	Ala Leu Gly Ser	Pro Val Ala 45 Gly	Ser Lys 30 Leu Leu	15 Asp Thr	Tyr Ser Ser
30	<213> <220> <223> <400> Ala Ser The Phe Pro Gly Val 50 Leu Ser 65	Иску иску 5 Thr Ser O Glu 35 His	Lys Gly 20 Pro Thr	Gly 5 Gly Val Phe	Синт Pro Thr Thr Pro Thr 70	Ser Ala Val Ala 55 Val	Val Ala Ser 40 Val	Phe Leu 25 Trp Leu Ser	Pro 10 Gly Asn Gln Ser	Leu Cys Ser Ser Ser	Ala Leu Gly Ser 60 Leu	Pro Val Ala 45 Gly	Ser Lys 30 Leu Leu Thr	15 Asp Thr Tyr	Tyr Ser Ser Thr
<i>30 35</i>	<213> <220> <223> <400> Ala Ser The Phe Pro Gly Val 50 Leu Ser	Иску иску 5 Thr Ser O Glu 35 His	Lys Gly 20 Pro Thr	Gly 5 Gly Val Phe Val Val	Синт Pro Thr Thr Pro Thr 70	Ser Ala Val Ala 55 Val	Val Ala Ser 40 Val	Phe Leu 25 Trp Leu Ser	Pro 10 Gly Asn Gln Ser	Leu Cys Ser Ser Ser	Ala Leu Gly Ser 60 Leu	Pro Val Ala 45 Gly	Ser Lys 30 Leu Leu Thr	15 Asp Thr Tyr Gln Asp	Tyr Ser Ser Thr
30	<213> <220> <223> <400> Ala Ser Ser Thr Phe Pro Gly Val 50 Leu Ser 65 Tyr Ile	UCKY UCKY 5 Thr Ser OGlu 35 His Ser	Lys Gly 20 Pro Thr Val	Gly 5 Gly Val Phe Val Val 85	Синт Pro Thr Thr Pro Thr 70 Asn	Ser Ala Val Ala 55 Val	Val Ala Ser 40 Val Pro	Phe Leu 25 Trp Leu Ser	Pro 10 Gly Asn Gln Ser 90	Leu Cys Ser Ser Ser 75 Asn	Ala Leu Gly Ser 60 Leu Thr	Pro Val Ala 45 Gly Gly Lys	Ser Lys 30 Leu Leu Thr	15 Asp Thr Tyr Gln Asp 95	Tyr Ser Ser Thr 80 Lys
<i>30 35</i>	<213> <220> <223> <400> Ala Ser The Phe Pro Gly Val 50 Leu Ser 65	UCKY UCKY 5 Thr Ser OGlu 35 His Ser	Lys Gly 20 Pro Thr Val Asn	Gly 5 Gly Val Phe Val Val 85	Синт Pro Thr Thr Pro Thr 70 Asn	Ser Ala Val Ala 55 Val	Val Ala Ser 40 Val Pro	Phe Leu 25 Trp Leu Ser Pro	Pro 10 Gly Asn Gln Ser 90	Leu Cys Ser Ser Ser 75 Asn	Ala Leu Gly Ser 60 Leu Thr	Pro Val Ala 45 Gly Gly Lys	Ser Lys 30 Leu Leu Thr Val	15 Asp Thr Tyr Gln Asp 95	Tyr Ser Ser Thr 80 Lys
<i>30 35</i>	<213> <220> <223> <400> Ala Ser Thr Phe Pro Gly Var 50 Leu Ser 65 Tyr Ile Lys Var	Иску иску 5 Thr Ser Glu 35 His Cys	Lys Gly 20 Pro Thr Val Asn Pro 100	Gly 5 Gly Val Phe Val Val 85 Lys	Pro Thr Thr Pro Thr Asn	Ser Ala Val Ala 55 Val His	Val Ala Ser 40 Val Pro Lys Asp	Phe Leu 25 Trp Leu Ser Pro Lys 105	Pro 10 Gly Asn Gln Ser 90 Thr	Leu Cys Ser Ser Ser 75 Asn	Ala Leu Gly Ser 60 Leu Thr	Pro Val Ala 45 Gly Gly Lys Cys	Ser Lys 30 Leu Leu Thr Val Pro 110	15 Asp Thr Tyr Gln Asp 95 Pro	Tyr Ser Ser Thr 80 Lys Cys
<i>30 35</i>	<213> <220> <223> <400> Ala Ser Ser Thr Phe Pro Gly Val 50 Leu Ser 65 Tyr Ile	NCKY UCKY Thr Ser Glu 35 His Cys Glu Pro	Lys Gly 20 Pro Thr Val Asn Pro 100	Gly 5 Gly Val Phe Val Val 85 Lys	Pro Thr Thr Pro Thr Asn	Ser Ala Val Ala 55 Val His	Val Ala Ser 40 Val Pro Lys Asp	Phe Leu 25 Trp Leu Ser Pro Lys 105	Pro 10 Gly Asn Gln Ser 90 Thr	Leu Cys Ser Ser Ser 75 Asn	Ala Leu Gly Ser 60 Leu Thr	Pro Val Ala 45 Gly Gly Lys Cys Leu	Ser Lys 30 Leu Leu Thr Val Pro 110	15 Asp Thr Tyr Gln Asp 95 Pro	Tyr Ser Ser Thr 80 Lys Cys
30 35 40	<213> <220> <223> <400> Ala Ser Thr Phe Pro Gly Val 50 Leu Ser 65 Tyr Ile Lys Val Pro Ala	MCKY UCKY Thr Ser Glu 35 L His C Ser Cys L Glu A Pro 115	Lys Gly 20 Pro Thr Val Asn Pro 100 Glu	Gly 5 Gly Val Phe Val Val Lys Leu	Синт Pro Thr Thr Pro Thr 70 Asn Ser Leu	Ser Ala Val Ala 55 Val His Cys Gly	Val Ala Ser 40 Val Pro Lys Asp Gly 120	Phe Leu 25 Trp Leu Ser Pro Lys 105 Pro	Pro 10 Gly Asn Gln Ser 90 Thr	Leu Cys Ser Ser 75 Asn His	Ala Leu Gly Ser 60 Leu Thr Thr	Pro Val Ala 45 Gly Gly Lys Cys Leu 125	Ser Lys 30 Leu Leu Thr Val Pro 110 Phe	15 Asp Thr Tyr Gln Asp 95 Pro	Tyr Ser Ser Thr 80 Lys Cys
<i>30 35</i>	<213> <220> <223> <400> Ala Ser Thr Phe Pro Gly Var 50 Leu Ser 65 Tyr Ile Lys Var	MCKY UCKY 5 Thr Ser Clu 35 His Cys Cys Clu A Pro 115 Cys	Lys Gly 20 Pro Thr Val Asn Pro 100 Glu	Gly 5 Gly Val Phe Val Val Lys Leu	Синт Pro Thr Thr Pro Thr 70 Asn Ser Leu	Ser Ala Val Ala 55 Val His Cys Gly	Val Ala Ser 40 Val Pro Lys Asp Gly 120	Phe Leu 25 Trp Leu Ser Pro Lys 105 Pro	Pro 10 Gly Asn Gln Ser 90 Thr	Leu Cys Ser Ser 75 Asn His	Ala Leu Gly Ser 60 Leu Thr Thr	Pro Val Ala 45 Gly Gly Lys Cys Leu 125	Ser Lys 30 Leu Leu Thr Val Pro 110 Phe	15 Asp Thr Tyr Gln Asp 95 Pro	Tyr Ser Ser Thr 80 Lys Cys
30 35 40	<213> <220> <223> <400> Ala Ser Thr Ser Thr Phe Pro Gly Val 50 Leu Ser 65 Tyr Ile Lys Val Pro Ala Lys Pro 130	MCKY UCKY Thr Ser Glu 35 L His Cys L Glu A Pro 115 Lys	Lys Gly 20 Pro Thr Val Asn Pro 100 Glu Asp	Gly 5 Gly Val Phe Val Ual 85 Lys Leu Thr	Синт Pro Thr Thr Pro Thr 70 Asn Ser Leu	Ser Ala Val Ala 55 Val His Cys Gly Met 135	Val Ala Ser 40 Val Pro Lys Asp Gly 120 Ile	Phe Leu 25 Trp Leu Ser Pro Lys 105 Pro	Pro 10 Gly Asn Gln Ser Ser 90 Thr Ser Arg	Leu Cys Ser Ser 75 Asn His Val	Ala Leu Gly Ser 60 Leu Thr Thr Phe	Pro Val Ala 45 Gly Gly Lys Cys Leu 125 Glu	Ser Lys 30 Leu Leu Thr Val Pro 110 Phe	15 Asp Thr Tyr Gln Asp 95 Pro Pro	Tyr Ser Ser Thr 80 Lys Cys Pro
30 35 40	<213> <220> <223> <400> Ala Ser Thr Phe Pro Gly Var 50 Leu Ser 65 Tyr Ile Lys Var Lys Pro Lys Pro	MCKY UCKY Thr Ser Glu 35 L His Cys L Glu A Pro 115 Lys	Lys Gly 20 Pro Thr Val Asn Pro 100 Glu Asp	Gly 5 Gly Val Phe Val Ual 85 Lys Leu Thr	Синт Pro Thr Thr Pro Thr 70 Asn Ser Leu	Ser Ala Val Ala 55 Val His Cys Gly Met 135	Val Ala Ser 40 Val Pro Lys Asp Gly 120 Ile	Phe Leu 25 Trp Leu Ser Pro Lys 105 Pro	Pro 10 Gly Asn Gln Ser Ser 90 Thr Ser Arg	Leu Cys Ser Ser 75 Asn His Val	Ala Leu Gly Ser 60 Leu Thr Thr Phe	Pro Val Ala 45 Gly Gly Lys Cys Leu 125 Glu	Ser Lys 30 Leu Leu Thr Val Pro 110 Phe	15 Asp Thr Tyr Gln Asp 95 Pro Pro	Tyr Ser Ser Thr 80 Lys Cys Pro

```
Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu
                    165
                                170
     Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu
                 180
                                    185
     His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn
5
             195
                                 200
                                                    205
     Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly
                             215
                                                 220
     Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu
                         230
                                             235
10
     Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr
                    245
                                        250
     Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
                                    265
                                                        270
                 260
15
     Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe
             275
                                280
                                                    285
     Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn
                                                300
                            295
     Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr
20
                        310
                                    315
     Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
                     325
     <210> 6
     <211> 326
     <212> PRT
25
     <213> Искусственная
     <220>
     <223> искусственно синтезированная последовательность
     Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg
30
                                        10
     Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr
                20
                                    25
     Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser
35
                                 40
     Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser
         50
                             55
                                                 60
     Leu Ser Ser Val Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr
                        70
                                            75
     Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys
40
                    85
                                        90
     Thr Val Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro
                 100
                                     105
     Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp
                                120
                                                    125
45
     Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp
                           135
     Val Ser His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly
```

	145					150					155					160
	Val G	lu V	/al	His	Asn	Ala	Lys	Thr	Lys	Pro	Arg	Glu	Glu	Gln	Phe	Asn
					165					170					175	
	Ser T	hr E	Phe	Arg	Val	Val	Ser	Val	Leu	Thr	Val	Val	His	Gln	Asp	Trp
5				180					185					190		
	Leu A	sn (Gly	Lys	Glu	Tyr	Lys	Cys	Lys	Val	Ser	Asn	Lys	Gly	Leu	Pro
		1	L95					200					205			
	Ala P		Ile	Glu	Lys	Thr		Ser	Lys	Thr	Lys		Gln	Pro	Arg	Glu
		10					215					220				
10	Pro G	3ln ∖	/al	Tyr	Thr		Pro	Pro	Ser	Arg		Glu	Met	Thr	Lys	
	225		_	_	_,	230	_		_		235		_	_	_	240
	Gln V	al S	Ger	Leu		Cys	Leu	Val	Lys		Phe	Tyr	Pro	Ser		Ile
	77 - 77	7-1 (71.,	Ш.2020	245	C 0 22	7 00	C1	C1 5	250 Dra	C1.,	7 00	7 ~~	Птто	255	mb x
15	Ala V	al (∍⊥U	260	GIU	ser	ASII	GIY	265	Pro	GIU	ASII	ASII	270	гуѕ	THE
15	Thr P	ro I	2ro		T. (21)	Aen	Sar	Aen		Sar	Dha	Dha	T. (21)		Sar	T.170
	IIII I		275	Mec	пец	АЗР	Del	280	СТУ	Det	1116	1116	285	тут	Del	цуз
	Leu T		_	Asp	Lvs	Ser	Ara		Gln	Gln	Glv	Asn		Phe	Ser	Cvs
		90	-	1	-1-		295				1	300			-	- 1 -
20	Ser V		1et	His	Glu	Ala		His	Asn	His	Tyr		Gln	Lys	Ser	Leu
	305					310					315			-		320
	Ser L	eu S	Ser	Pro	Gly	Lys										
					325											
	<210>	. 7														
25	<211>	37	77													
25	<211> <212>															
25	<212> <213>	· PF	RT	СТВЄ	енная	I										
25	<212> <213> <220>	PF Mo	RT Ckyc													
	<212><213><220><223>	· NO	RT Ckyc				resnī	оован	ная	посј	гедог	затеј	тьно(СТЬ		
25 30	<212><213><220><223><400>	PF Ис	RT Скус	CTBe	енно	синт										
	<212><213><223><223><400>Ala S	PF Ис	RT Скус	CTBe	енно Gly	синт				Pro						Arg
	<212> <213> <220> <223> <400> Ala S	PF · Ис · ис · 7	RT Ckyc Ckyc Thr	сстве Lys	Энно Gly 5	синт	Ser	Val	Phe	Pro 10	Leu	Ala	Pro	Cys	15	
	<212><213><223><223><400>Ala S	PF · Ис · ис · 7	RT Ckyc Ckyc Thr	сстве Lys Gly	Энно Gly 5	синт	Ser	Val	Phe Leu	Pro 10	Leu	Ala	Pro	Cys Lys	15	
30	<212> <213> <220> <223> <400> Ala S 1 Ser T	PF Ис ис 7 Ser T	RT Ekyc Ekyc Thr Ser	Lys Gly 20	Энно Gly 5 Gly	синт Pro Thr	Ser Ala	Val Ala	Phe Leu 25	Pro 10 Gly	Leu Cys	Ala Leu	Pro Val	Cys Lys 30	15 Asp	Tyr
	<212> <213> <220> <223> <400> Ala S	PF No.	RT EKYC EKYC Fhr Ser	Lys Gly 20	Энно Gly 5 Gly	синт Pro Thr	Ser Ala	Val Ala	Phe Leu 25	Pro 10 Gly	Leu Cys	Ala Leu	Pro Val	Cys Lys 30	15 Asp	Tyr
30	<212><213><220><223><400>Ala S 1 Ser T	PF No.	RT CKYC CKYC Thr Ser Glu 35	Lys Gly 20 Pro	Gly 5 Gly Val	Синт Pro Thr	Ser Ala Val	Val Ala Ser 40	Phe Leu 25 Trp	Pro 10 Gly Asn	Leu Cys Ser	Ala Leu Gly	Pro Val Ala 45	Cys Lys 30 Leu	15 Asp Thr	Tyr Ser
30	<212><213><220><223><400>Ala S 1 Phe P Gly V	PF No.	RT CKYC CKYC Thr Ser Glu 35	Lys Gly 20 Pro	Gly 5 Gly Val	Синт Pro Thr	Ser Ala Val	Val Ala Ser 40	Phe Leu 25 Trp	Pro 10 Gly Asn	Leu Cys Ser	Ala Leu Gly	Pro Val Ala 45	Cys Lys 30 Leu	15 Asp Thr	Tyr Ser
30	<212><213><220><223><400>Ala S 1 Phe P Gly V	PF Model No. 19 Mo	RT Erkyc Fhr Ger Glu His	Lys Gly 20 Pro	Gly 5 Gly Val	Pro Thr Thr	Ser Ala Val Ala 55	Val Ala Ser 40 Val	Phe Leu 25 Trp Leu	Pro 10 Gly Asn	Leu Cys Ser	Ala Leu Gly Ser 60	Pro Val Ala 45 Gly	Cys Lys 30 Leu Leu	15 Asp Thr	Tyr Ser Ser
30	<212><213><220><223><400> Ala S 1 Ser T Gly V	PF Model No. 19 Mo	RT Erkyc Fhr Ger Glu His	Lys Gly 20 Pro	Gly 5 Gly Val	Pro Thr Thr	Ser Ala Val Ala 55	Val Ala Ser 40 Val	Phe Leu 25 Trp Leu	Pro 10 Gly Asn	Leu Cys Ser	Ala Leu Gly Ser 60	Pro Val Ala 45 Gly	Cys Lys 30 Leu Leu	15 Asp Thr	Tyr Ser Ser
<i>30 35</i>	<212> <213> <220> <223> <400> Ala S 1 Ser T Phe P Gly V 5 Leu S	PF Model No. 10 Mo	RT CERYC CERYC Fhr Ger Glu His Ger	Lys Gly 20 Pro Thr	Gly 5 Gly Val Phe	Синт Pro Thr Thr Pro Thr 70	Ser Ala Val Ala 55 Val	Val Ala Ser 40 Val Pro	Phe Leu 25 Trp Leu Ser	Pro 10 Gly Asn Gln Ser	Leu Cys Ser Ser Ser	Ala Leu Gly Ser 60 Leu	Pro Val Ala 45 Gly	Cys Lys 30 Leu Leu Thr	15 Asp Thr Tyr	Tyr Ser Ser Thr
<i>30 35</i>	<212><213><220><223><400> Ala S 1 Ser T Gly V 5 Leu S 65	PF Model No. 10 Mo	RT CERYC CERYC Fhr Ger Glu His Ger	Lys Gly 20 Pro Thr	Gly 5 Gly Val Phe	Синт Pro Thr Thr Pro Thr 70	Ser Ala Val Ala 55 Val	Val Ala Ser 40 Val Pro	Phe Leu 25 Trp Leu Ser	Pro 10 Gly Asn Gln Ser	Leu Cys Ser Ser Ser	Ala Leu Gly Ser 60 Leu	Pro Val Ala 45 Gly	Cys Lys 30 Leu Leu Thr	15 Asp Thr Tyr	Tyr Ser Ser Thr
<i>30 35</i>	<212><213><220><223><400> Ala S 1 Ser T Gly V 5 Leu S 65	PF Oro Oro Oro Oro Oro Oro Oro Or	RT Cys	Lys Gly 20 Pro Thr Val	Gly 5 Gly Val Phe Val Val 85	Синт Pro Thr Thr Pro Thr 70 Asn	Ser Ala Val Ala 55 Val	Val Ala Ser 40 Val Pro	Phe Leu 25 Trp Leu Ser	Pro 10 Gly Asn Gln Ser Ser	Leu Cys Ser Ser Ser 75 Asn	Ala Leu Gly Ser 60 Leu Thr	Pro Val Ala 45 Gly Gly Lys	Cys Lys 30 Leu Leu Thr	15 Asp Thr Tyr Gln Asp 95	Tyr Ser Ser Thr 80 Lys
<i>30 35</i>	<212><213><220><223><400>Ala S 1 Ser T Phe P Gly V 5 Leu S 65 Tyr T	PF Oro Oro Oro Oro Oro Oro Oro Or	RT Cys	Lys Gly 20 Pro Thr Val	Gly 5 Gly Val Phe Val Val 85	Синт Pro Thr Thr Pro Thr 70 Asn	Ser Ala Val Ala 55 Val	Val Ala Ser 40 Val Pro	Phe Leu 25 Trp Leu Ser	Pro 10 Gly Asn Gln Ser Ser	Leu Cys Ser Ser Ser 75 Asn	Ala Leu Gly Ser 60 Leu Thr	Pro Val Ala 45 Gly Gly Lys	Cys Lys 30 Leu Leu Thr	15 Asp Thr Tyr Gln Asp 95	Tyr Ser Ser Thr 80 Lys
<i>30 35</i>	<212><213><220><223><400>Ala S 1 Ser T Phe P Gly V 5 Leu S 65 Tyr T	PF Model No. 7 Ser 1 Ser	RT CKYC CKYC Chr Glu Glu Glis Ger Cys Glu	Lys Gly 20 Pro Thr Val Asn Leu 100	Gly 5 Gly Val Phe Val Val 85 Lys	Pro Thr Thr Pro Thr Asn	Ser Ala Val Ala 55 Val His	Val Ala Ser 40 Val Pro Lys Leu	Phe Leu 25 Trp Leu Ser Pro Gly 105	Pro 10 Gly Asn Gln Ser 90 Asp	Leu Cys Ser Ser Ser 75 Asn	Ala Leu Gly Ser 60 Leu Thr	Pro Val Ala 45 Gly Gly Lys His	Cys Lys 30 Leu Leu Thr Val Thr 110	15 Asp Thr Tyr Gln Asp 95 Cys	Tyr Ser Ser Thr 80 Lys
<i>30 35</i>	<212> <213> <220> <223> <400> Ala S 1 Ser T Phe P Gly V 5 Leu S 65 Tyr T Arg V	PF O O O O O O O O O O O O O	RT CKYC CKYC Chr Glu	Lys Gly 20 Pro Thr Val Asn Leu 100	Gly 5 Gly Val Phe Val Val 85 Lys	Pro Thr Thr Pro Thr Asn	Ser Ala Val Ala 55 Val His	Val Ala Ser 40 Val Pro Lys Leu	Phe Leu 25 Trp Leu Ser Pro Gly 105	Pro 10 Gly Asn Gln Ser 90 Asp	Leu Cys Ser Ser Ser 75 Asn	Ala Leu Gly Ser 60 Leu Thr	Pro Val Ala 45 Gly Gly Lys His	Cys Lys 30 Leu Leu Thr Val Thr 110	15 Asp Thr Tyr Gln Asp 95 Cys	Tyr Ser Ser Thr 80 Lys
<i>30 35</i>	<212> <213> <220> <223> <400> Ala S 1 Ser T Phe P Gly V 5 Leu S 65 Tyr T Arg V Arg C Cys P	PF Mc	RT CKYC CKYC CKYC CKYC CFhr Slu S5 His Cys Slu Pro L15	Lys Gly 20 Pro Thr Val Asn Leu 100 Glu	Gly 5 Gly Val Phe Val Val Lys	Pro Thr Thr Pro Thr 70 Asn Thr	Ser Ala Val Ala 55 Val His Pro	Val Ala Ser 40 Val Pro Lys Leu Cys 120	Phe Leu 25 Trp Leu Ser Pro Gly 105 Asp	Pro 10 Gly Asn Gln Ser 90 Asp	Leu Cys Ser Ser 75 Asn Thr	Ala Leu Gly Ser 60 Leu Thr Thr	Pro Val Ala 45 Gly Gly Lys His Pro 125	Cys Lys 30 Leu Leu Thr Val Thr 110 Cys	15 Asp Thr Tyr Gln Asp 95 Cys	Tyr Ser Ser Thr 80 Lys Pro

	Pro Gli	ı Pro	Lys	Ser	Cys 150	Asp	Thr	Pro	Pro	Pro 155	Cys	Pro	Arg	Cys	Pro 160
	Ala Pro	o Glu	Leu	Leu 165	Gly	Gly	Pro	Ser	Val 170	Phe	Leu	Phe	Pro	Pro 175	Lys
5	Pro Ly	s Asp	Thr 180	Leu	Met	Ile	Ser	Arg 185	Thr	Pro	Glu	Val	Thr 190	Cys	Val
	Val Va	l Asp 195	Val	Ser	His	Glu	Asp 200	Pro	Glu	Val	Gln	Phe 205	Lys	Trp	Tyr
10	Val As ₁	_	Val	Glu	Val	His 215	Asn	Ala	Lys	Thr	Lys 220	Pro	Arg	Glu	Glu
	Gln Ty: 225				230					235					240
	Gln As _l			245					250					255	
15	Ala Le		260				_	265					270	_	
	Pro Arc	275					280					285			
20	Thr Lys)				295		_			300	_		_	
	Ser Asj				310					315					320
25	Tyr Ası			325				_	330	_	_			335	
25	Tyr Se		340					345					350		
	Lys Se	355					360		пец	1113	ASII	365	1116	1111	GIII
30	37		DCI	ПСИ	DCI	375	Oly	цуо							
	<210>	8													
	<211> <212>	327 PRT													
		Иску	CCTB	енна	FI										
35	<220>														
	<223> <400>	иску 8	CCTB	онне	СИН:	гезиј	рован	ная	посл	педог	зател	пьно	СТЬ		
	Ala Se	r Thr	Lys	Gly	Pro	Ser	Val	Phe	Pro	Leu	Ala	Pro	Cys	Ser	Arg
40	1	9	G 1	5	m1	7 . 7	- I	-	10	~	-	1	-	15	_
40	Ser Th		20					25	_				30	_	_
	Phe Pro	35					40				_	45			
45	Gly Va					55					60	_			
	Leu Se:	r Ser	Val	Val	Thr 70	Val	Pro	Ser	Ser	Ser 75	Leu	Gly	Thr	Lys	Thr 80
	Tyr Th	r Cys	Asn	Val	Asp	His	Lys	Pro	Ser	Asn	Thr	Lys	Val	Asp	Lys

					85					90					95	
	Arg	Val	Glu	Ser	Lys	Tyr	Gly	Pro	Pro	Cys	Pro	Ser	Cys	Pro	Ala	Pro
				100					105					110		
	Glu	Phe	Leu	Gly	Gly	Pro	Ser	Val	Phe	Leu	Phe	Pro	Pro	Lys	Pro	Lys
5			115					120					125			
	Asp	Thr	Leu	Met	Ile	Ser	Arg	Thr	Pro	Glu	Val	Thr	Cys	Val	Val	Val
		130					135					140				
	Asp	Val	Ser	Gln	Glu	Asp	Pro	Glu	Val	Gln	Phe	Asn	Trp	Tyr	Val	Asp
	145					150					155					160
10	Gly	Val	Glu	Val		Asn	Ala	Lys	Thr	_	Pro	Arg	Glu	Glu		Phe
					165					170					175	
	Asn	Ser	Thr		Arg	Val	Val	Ser		Leu	Thr	Val	Leu		Gln	Asp
				180					185					190		
	Trp	Leu	Asn	Gly	Lys	Glu	Tyr	-	Cys	Lys	Val	Ser		Lys	Gly	Leu
15	.	<u> </u>	195	- 1	Q]	-	m1	200	a	-	2.7	-	205	G 1	<u>.</u>	70
	Pro		Ser	IIe	Glu	Lys		lle	ser	Lys	Ala	_	GIY	GIn	Pro	Arg
	C1.,	210 Bro	Gln	7727	Пттх	Πh∽	215	Dro	Dro	Cor	Cln	220	Clu	Mo+	Πhγ	T 110
	225	PIO	GIII	val	тут	230	ьеи	PIO	PIO	ser	235	GIU	GIU	мес	TIIL	цуS 240
20		Gln	Val	Ser	T.e11		Cvs	T.e11	Val	T.175		Phe	Тиг	Pro	Ser	
20	71511	OIII	vai	DCI	245	1111	СуБ	пси	vai	250	ОТУ	TIIC	тут	110	255	7150
	Ile	Ala	Val	Glu		Glu	Ser	Asn	Glv		Pro	Glu	Asn	Asn		Lvs
				260					265					270	-1-	-1-
	Thr	Thr	Pro	Pro	Val	Leu	Asp	Ser	Asp	Gly	Ser	Phe	Phe	Leu	Tyr	Ser
25			275				-	280	-	_			285		-	
	Arg	Leu	Thr	Val	Asp	Lys	Ser	Arg	Trp	Gln	Glu	Gly	Asn	Val	Phe	Ser
		290					295					300				
	Cys	Ser	Val	Met	His	Glu	Ala	Leu	His	Asn	His	Tyr	Thr	Gln	Lys	Ser
	305					310					315					320
30	Leu	Ser	Leu	Ser	Leu	Gly	Lys									
					325											
	<210		9													
	<211		141													
	<212		PRT													
35	<213		Homo	sapi	iens											
	<400		9	-	<u>.</u>	-	<u>.</u>	7. 7			G 1	-	-	-	a	_
	_	lle	Gln	Asn		Asp	Pro	Ala	Val	_	GIn	Leu	Arg	Asp		Lys
	1	C 0 70	7 00	T	5	7701	Crra	т ол	Dho	10	7 00	Dho	7 00	C 0 22	15	mb w
40	ser	ser	Asp	цуS 20	ser	Val	СУЅ	ьеи	25	TIIT	Asp	rne	Asp	30	GIII	TIIL
40	Aen	17 a l	Ser		Sar	T.170	Aen	Sar		U2]	Ψττν	Tlo	Thr		T.170	Пhr
	71511	vai	35	OIII	DCI	шуз	7150	40	1150	vai	тут	110	45	7150	шуз	1111
	Val	Leu	Asp	Met.	Ara	Ser	Met.		Phe	Lvs	Ser	Asn	_	Ala	Val	Ala
		50	1101	1100	9	201	55	1101		_10	201	60	201	1120		1110
45	Trp		Asn	Lys	Ser	Asp		Ala	Cys	Ala	Asn		Phe	Asn	Asn	Ser
	65			<u>.</u>		70	-	-	<u>.</u> -		75	-	-			80
	Ile	Ile	Pro	Glu	Asp	Thr	Phe	Phe	Pro	Ser	Pro	Glu	Ser	Ser	Cys	Asp
					85					90					95	-

```
Val Lys Leu Val Glu Lys Ser Phe Glu Thr Asp Thr Asn Leu Asn Phe
                 100
                                 105
     Gln Asn Leu Ser Val Ile Gly Phe Arg Ile Leu Leu Leu Lys Val Ala
                                 120
     Gly Phe Asn Leu Leu Met Thr Leu Arg Leu Trp Ser Ser
5
        130
                             135
     <210> 10
     <211> 179
     <212> PRT
     <213> Homo sapiens
10
     <400> 10
     Glu Asp Leu Lys Asn Val Phe Pro Pro Glu Val Ala Val Phe Glu Pro
                     5
                                         10
     Ser Glu Ala Glu Ile Ser His Thr Gln Lys Ala Thr Leu Val Cys Leu
15
                                     25
     Ala Thr Gly Phe Tyr Pro Asp His Val Glu Leu Ser Trp Trp Val Asn
                                 40
                                                     45
     Gly Lys Glu Val His Ser Gly Val Ser Thr Asp Pro Gln Pro Leu Lys
                             55
     Glu Gln Pro Ala Leu Asn Asp Ser Arg Tyr Cys Leu Ser Ser Arg Leu
20
                         70
                                             75
     Arg Val Ser Ala Thr Phe Trp Gln Asn Pro Arg Asn His Phe Arg Cys
                                         90
     Gln Val Gln Phe Tyr Gly Leu Ser Glu Asn Asp Glu Trp Thr Gln Asp
                 100
                                     105
25
     Arg Ala Lys Pro Val Thr Gln Ile Val Ser Ala Glu Ala Trp Gly Arg
                                 120
     Ala Asp Cys Gly Phe Thr Ser Glu Ser Tyr Gln Gln Gly Val Leu Ser
         130
                            135
                                                 140
     Ala Thr Ile Leu Tyr Glu Ile Leu Leu Gly Lys Ala Thr Leu Tyr Ala
30
                        150
                                             155
     Val Leu Val Ser Ala Leu Val Leu Met Ala Met Val Lys Arg Lys Asp
                                         170
                    165
                                                             175
     Ser Arg Gly
     <210> 11
35
     <211> 173
     <212> PRT
     <213> Homo sapiens
     Asp Lys Gln Leu Asp Ala Asp Val Ser Pro Lys Pro Thr Ile Phe Leu
40
                                         1.0
     Pro Ser Ile Ala Glu Thr Lys Leu Gln Lys Ala Gly Thr Tyr Leu Cys
     Leu Leu Glu Lys Phe Phe Pro Asp Val Ile Lys Ile His Trp Gln Glu
                                 40
45
     Lys Lys Ser Asn Thr Ile Leu Gly Ser Gln Glu Gly Asn Thr Met Lys
                             55
     Thr Asn Asp Thr Tyr Met Lys Phe Ser Trp Leu Thr Val Pro Glu Lys
```

	65		70			75					80
	Ser Leu As	p Lys Glu 85	His Ar	g Cys		Val Arg 90	His	Glu	Asn	Asn 95	Lys
5	Asn Gly Va	l Asp Gln 100	Glu Il	e Ile	Phe I	Pro Pro	Ile	Lys	Thr 110	Asp	Val
	Ile Thr Me		Lys As	p Asn 120	Cys S	Ser Lys	Asp	Ala 125	Asn	Asp	Thr
	Leu Leu Le	u Gln Leu	Thr As		Ser A	Ala Tyr	Tyr 140	Met	Tyr	Leu	Leu
10	Leu Leu Le	u Lys Ser	Val Va 150	l Tyr	Phe A	Ala Ile 155	Ile	Thr	Cys	Cys	Leu 160
	Leu Arg Ar	g Thr Ala 165	Phe Cy	s Cys			Lys	Ser			
	<210> 12										
15	<211> 204										
	<212> PRT										
		o sapiens									
	<400> 12		7 77	1 0		. D	m1	- 1	D1	-	_
20	Lys Gln Le	u ASP Ala 5	Asp va	ı ser		Lys Pro 10	Thr	IIe	Pne	ьеи 15	Pro
20	Ser Ile Al	_	Lvs Le	u Gln			Thr	Tvr	Leu		Leu
		20	1		25	_		_	30	-	
	Leu Glu Ly		Pro As	p Ile 40	Ile I	Lys Ile	His	Trp 45	Gln	Glu	Lys
25	Lys Ser As	n Thr Ile	Leu Gl 55		Gln (Glu Gly	Asn 60	Thr	Met	Lys	Thr
	Asn Asp Th	r Tyr Met		e Ser	Trp I	Leu Thr	Val	Pro	Glu	Glu	Ser
	65		70			75		_	_	_	80
30	Leu Asp Ly	85			9	90				95	
	Gly Ile As	p Gln Glu 100	Ile Il	e Phe	Pro I 105	Pro Ile	Lys	Thr	110	Val	Thr
	Thr Val As	p Pro Lys	Asp Se	r Tyr	Ser I	Lys Asp	Ala	Asn	Asp	Val	Thr
	. 11			120				125		_	
35	Thr Val As		13	5			140				
	Thr Met As	p Pro Lys	=	n Trp	Ser I		Ala	Asn	Asp	Thr	
	145	n Iou Thr	150	r Cor	7.1.5 [155	Mo+	П	T 011	T 011	160
40	Leu Leu Gl	165		r ser		171 171 170	Met	тут	ьеи	175	Leu
70	Leu Leu Ly			r Phe			Thr	Cys	Cys		Leu
	-	180	_		185			_	190		
	Gly Arg Th	r Ala Phe	Cys Cy	s Asn	Gly (Glu Lys	Ser				
	19	5		200							
45	<210> 13										
	<211> 177										
	<212> PRT										
	<213> Hom	o sapiens									

	< 400)> :	13														
	Pro	Ser	Tyr	Thr	Gly	Gly	Tyr	Ala	Asp	Lys	Leu	Ile	Phe	Gly	Lys	Gly	
	1				5					10					15		
	Thr	Arg	Val	Thr	Val	Glu	Pro	Arg	Ser	Gln	Pro	His	Thr	Lys	Pro	Ser	
5				20					25					30			
	Val	Phe	Val	Met	Lys	Asn	Gly	Thr	Asn	Val	Ala	Cys	Leu	Val	Lys	Glu	
			35					40					45				
	Phe	Tyr	Pro	Lys	Asp	Ile	Arg	Ile	Asn	Leu	Val	Ser	Ser	Lys	Lys	Ile	
		50					55					60					
10	Thr	Glu	Phe	Asp	Pro	Ala	Ile	Val	Ile	Ser	Pro	Ser	Gly	Lys	Tyr	Asn	
	65					70					75					80	
	Ala	Val	Lys	Leu	Gly	Lys	Tyr	Glu	Asp	Ser	Asn	Ser	Val	Thr	Cys	Ser	
					85					90					95		
	Val	Gln	His	Asp	Asn	Lys	Thr	Val	His	Ser	Thr	Asp	Phe	Glu	Val	Lys	
15				100					105					110			
	Thr	Asp	Ser	Thr	Asp	His	Val	Lys	Pro	Lys	Glu	Thr	Glu	Asn	Thr	Lys	
			115					120					125				
	Gln	Pro	Ser	Lys	Ser	Cys	His	Lys	Pro	Lys	Ala	Ile	Val	His	Thr	Glu	
		130					135					140					
20	Lys	Val	Asn	Met	Met	Ser	Leu	Thr	Val	Leu	Gly	Leu	Arg	Met	Leu	Phe	
	145					150					155					160	
	Ala	Lys	Thr	Val	Ala	Val	Asn	Phe	Leu	Leu	Thr	Ala	Lys	Leu	Phe	Phe	
					165					170					175		
	Leu																
25	<210)> :	14														
	<211		549														
	<212		ДНК														
	<213			sapi	iens												
	<400		14														
30																ggtact	60
																gatggt	120
																gggaag	180
																aaggac	240
2.5				_	_	_		_	-	_	_				-	gtgtat	300
35		_			_	_	_				-					ctcttt	360
																caggat 	420
			_			_	_	_		_	_	_		_	_	ctctac	480
				aggat	cga	ga ag	gatga	accag	g tad	cagco	cacc	ttca	aagga	aaa (ccagt	tgagg	540
10		aatto	_														549
40	<210		15														
	<211		182														
	<212		PRT	000													
	<213			sapi	rens												
15	<400		15	C1	T	C1	т	77.	77-7	т	т1.	T	77.	т1.	T1.	T	
45	Met 1	GIU	GTII	σтλ	Lys 5	σтλ	ьеu	AId	val	Leu 10	тте	ьеи	AId	тте	Ile 15	теп	
		Cln	C1 ++	пь∽		Δ Ι ¬	Cln	Sar	T1^		C1 ++	Δen	ніс	וים.Т	val	T.170	
	шeи	U 111	оту	20	пеи	11±a	ULII	DET	25	шуз	оту	11011	1112	30	val	шуз	

	Val	Tyr	Asp 35	Tyr	Gln	Glu	Asp	Gly 40	Ser	Val	Leu	Leu	Thr 45	Cys	Asp	Ala	
	Glu	Ala		Asn	Tle	Thr	Trp		Lvs	Asp	Glv	Lvs	_	Tle	Gly	Phe	
		50	_				55		_	_	_	60			_		
5	Leu	Thr	Glu	Asp	Lys	Lys	Lys	Trp	Asn	Leu	Gly	Ser	Asn	Ala	Lys	Asp	
	65					70					75					80	
	Pro	Arg	Gly	Met	Tyr 85	Gln	Cys	Lys	Gly	Ser 90	Gln	Asn	Lys	Ser	Lys 95	Pro	
	Leu	Gln	Val	Tyr	Tyr	Arg	Met	Cys	Gln	Asn	Cys	Ile	Glu	Leu	Asn	Ala	
10				100					105					110			
	Ala	Thr	Ile	Ser	Gly	Phe	Leu	Phe	Ala	Glu	Ile	Val	Ser	Ile	Phe	Val	
			115					120					125				
	Leu	Ala	Val	Gly	Val	Tyr	Phe	Ile	Ala	Gly	Gln	Asp	Gly	Val	Arg	Gln	
		130					135					140					
15	Ser	Arg	Ala	Ser	Asp	Lys	Gln	Thr	Leu	Leu	Pro	Asn	Asp	Gln	Leu	Tyr	
	145					150					155					160	
	Gln	Pro	Leu	Lys	Asp	Arg	Glu	Asp	Asp	Gln	Tyr	Ser	His	Leu	Gln	Gly	
				-	165	_		-	-	170	-				175	-	
	Asn	Gln	Leu	Arg	Arq	Asn											
20				180													
	<210)> 1	16														
	<211	L> 5	516														
	<212	2> Д	ДНК														
	<213	3> I	Homo	sapi	iens												
25	<400)> 1	16														
	atgo	gaaca	ata (gcaco	gttt	ct ct	ctg	gccto	g gta	actgo	gcta	ccct	ttct	ctc	gcaaq	gtgagc	60
																accagc	120
	atca	acato	ggg .	taga	gggaa	ac go	gtggg	gaaca	a cto	gctct	cag	acat	taca	aag	actgo	gacctg	180
	ggaa	aaac	gca	tcct	ggac	cc ad	cgago	gaata	a tai	taggt	tgta	atg	ggaca	aga '	tatat	cacaag	240
30	gaca	aaaga	aat	ctaco	cgtg	ca aq	gttca	attat	cga	aatgi	tgcc	agag	gctgt	tgt (ggago	ctggat	300
	ccac	gccad	ccg	tggct	tggca	at ca	attgt	cact	gat	tgtca	attg	cca	ctct	gct	cctt	gctttg	360
	ggag	gtctt	tct (gctti	tgct	gg ad	catga	agact	gga	aaggo	ctgt	ctg	gggct	tgc .	cgaca	acacaa	420
	gcto	ctgtt	tga (ggaat	tgac	ca go	gtcta	atcag	g cc	cctc	cgag	atc	gagat	tga '	tgcto	cagtac	480
	agco	cacct	ttg (gagga	aaact	tg gg	gctc	ggaad	c aaq	gtga							516
35	<210)> 1	17														
	<211	L> 1	171														
	<212	2> 1	PRT														
	<213	3> I	Homo	sapi	iens												
	<400)> 1	17														
40	Met	Glu	His	Ser	Thr	Phe	Leu	Ser	Gly	Leu	Val	Leu	Ala	Thr	Leu	Leu	
	1				5					10					15		
	Ser	Gln	Val	Ser	Pro	Phe	Lys	Ile	Pro	Ile	Glu	Glu	Leu	Glu	Asp	Arg	
				20			=		25					30	-	-	
	Val	Phe	Val	Asn	Cys	Asn	Thr	Ser		Thr	Trp	Val	Glu	Gly	Thr	Val	
45			35		-			40			-		45	_			
	Gly	Thr		Leu	Ser	Asp	Ile	Thr	Arg	Leu	Asp	Leu	Gly	Lys	Arg	Ile	
	-	50				-	55		-		-	60	-	-	_		
	Leu	Asp	Pro	Arg	Gly	Ile	Tyr	Arg	Cys	Asn	Gly	Thr	Asp	Ile	Tyr	Lys	

	65 70 75 80	
	Asp Lys Glu Ser Thr Val Gln Val His Tyr Arg Met Cys Gln Ser Cys 85 90 95	
5	Val Glu Leu Asp Pro Ala Thr Val Ala Gly Ile Ile Val Thr Asp Val 100 105 110	
	Ile Ala Thr Leu Leu Leu Ala Leu Gly Val Phe Cys Phe Ala Gly His 115 120 125	
	Glu Thr Gly Arg Leu Ser Gly Ala Ala Asp Thr Gln Ala Leu Leu Arg 130 135 140	
10	Asn Asp Gln Val Tyr Gln Pro Leu Arg Asp Arg Asp Asp Ala Gln Tyr 145 150 155 160	
	Ser His Leu Gly Gly Asn Trp Ala Arg Asn Lys 165 170	
15	<210> 18 <211> 624	
	<212> ДНК <213> Homo sapiens	
	<pre><400> 18 atgcagtcgg gcactcactg gagagttctg ggcctctgcc tcttatcagt tggcgtttgg</pre>	0
20	gggcaagatg gtaatgaaga aatgggtggt attacacaga caccatataa agtctccatc 12	
	tottggaacca cagtaatatt gacatgccct cagtatcctg gatctgaaat actatggcaa 18	
	cacaatgata aaaacatagg cggtgatgag gatgataaaa acataggcag tgatgaggat 24 cacctgtcac tgaaggaatt ttcagaattg gagcaaagtg gttattatgt ctgctacccc 30	
	agaggaagca aaccagaaga tgcgaacttt tatctctacc tgagggcaag agtgtgtgag 36	
25	aactgcatgg agatggatgt gatgtcggtg gccacaattg tcatagtgga catctgcatc 42	0
	actgggggct tgctgctgct ggtttactac tggagcaaga atagaaaggc caaggccaag 48	
	cctgtgacac gaggagcggg tgctggcggc aggcaaaggg gacaaaacaa ggagaggcca 54 ccacctgttc ccaacccaga ctatgagccc atccggaaag gccagcggga cctgtattct 60	
	ccacctgttc ccaacccaga ctatgagccc atccggaaag gccagcggga cctgtattct 60 ggcctgaatc agagacgcat ctga 62	
30	<210> 19	
	<211> 207	
	<212> PRT	
	<213> Homo sapiens <400> 19	
35	Met Gln Ser Gly Thr His Trp Arg Val Leu Gly Leu Cys Leu Leu Ser	
	1 5 10 15	
	Val Gly Val Trp Gly Gln Asp Gly Asn Glu Glu Met Gly Gly Ile Thr 20 25 30	
10	Gln Thr Pro Tyr Lys Val Ser Ile Ser Gly Thr Thr Val Ile Leu Thr	
40	35 40 45 Cys Pro Gln Tyr Pro Gly Ser Glu Ile Leu Trp Gln His Asn Asp Lys	
	50 55 60	
	Asn Ile Gly Gly Asp Glu Asp Asp Lys Asn Ile Gly Ser Asp Glu Asp	
	65 70 75 80 W. J. G. J. J. G. G. J. G. G. J. J. G. G. J. J. G. J. J. G. J.	
45	His Leu Ser Leu Lys Glu Phe Ser Glu Leu Glu Gln Ser Gly Tyr Tyr 85 90 95	
	Val Cys Tyr Pro Arg Gly Ser Lys Pro Glu Asp Ala Asn Phe Tyr Leu	

105

110

100

```
Tyr Leu Arg Ala Arg Val Cys Glu Asn Cys Met Glu Met Asp Val Met
                                 120
             115
     Ser Val Ala Thr Ile Val Ile Val Asp Ile Cys Ile Thr Gly Gly Leu
                             135
5
     Leu Leu Val Tyr Tyr Trp Ser Lys Asn Arg Lys Ala Lys Ala Lys
                         150
                                            155
     Pro Val Thr Arg Gly Ala Gly Ala Gly Gly Arg Gln Arg Gly Gln Asn
                     165
                                         170
     Lys Glu Arg Pro Pro Pro Val Pro Asn Pro Asp Tyr Glu Pro Ile Arg
                 180
                                     185
10
     Lys Gly Gln Arg Asp Leu Tyr Ser Gly Leu Asn Gln Arg Arg Ile
                                 200
             195
                                                     205
     <210> 20
     <211> 4
     <212> PRT
15
     <213> Искусственная
     <220>
     <223> искусственно синтезированная последовательность
     <400> 20
     Gly Gly Gly Ser
20
     1
     <210> 21
     <211> 4
     <212> PRT
25
     <213> Искусственная
     <220>
     <223> искусственно синтезированная последовательность
     <400> 21
     Ser Gly Gly Gly
30
     <210> 22
     <211> 5
     <212> PRT
     <213> Искусственная
35
     <220>
     <223> искусственно синтезированная последовательность
     <400> 22
     Gly Gly Gly Ser
     <210> 23
40
     <211> 5
     <212> PRT
     <213> Искусственная
     <220>
45
     <223> искусственно синтезированная последовательность
     <400> 23
     Ser Gly Gly Gly
```

```
<210> 24
     <211> 6
     <212> PRT
     <213> Искусственная
     <220>
5
     <223> искусственно синтезированная последовательность
     <400> 24
     Gly Gly Gly Gly Ser
     <210> 25
10
     <211> 6
     <212> PRT
     <213> Искусственная
     <220>
     <223> искусственно синтезированная последовательность
     <400> 25
     Ser Gly Gly Gly Gly
     <210> 26
     <211> 7
20
     <212> PRT
     <213> Искусственная
     <223> искусственно синтезированная последовательность
     <400> 26
25
     Gly Gly Gly Gly Gly Ser
     <210> 27
     <211> 7
     <212> PRT
30
     <213> Искусственная
     <220>
     <223> искусственно синтезированная последовательность
     <400> 27
     Ser Gly Gly Gly Gly Gly
35
     <210> 28
     <211> 113
     <212> PRT
     <213> Искусственная
40
     <220>
     <223> искусственно синтезированная последовательность
     Gln Val Gln Leu Lys Glu Ala Gly Pro Gly Leu Val Gln Pro Thr Gln
                                        10
45
     Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Thr Ser Asp
                                    25
     Gly Val His Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Met
```

	35			40		45	
	Gly Ile Ile	e Tyr Tyr	Asp Gly	Gly Thr	Asp Tyr A	Asn Ser A	Ala Ile Lys
	50		55		(50	
-	_	ı Ser Ile	-	Asp Thr	_	Ser Gln V	Val Phe Leu
5	65	Sor Tou	70	Acr Acr	75	/o+ T::> T	80
	Lys IIe Asi	ser Leu 85	GIII IIII	ASP ASP	90	det låt l	Tyr Cys Ala 95
	Arg Ile His		Tyr Trp	Gly Gln		Met Val 1	Thr Val Ser
		100		105		1	110
10	Ser						
	<210> 29						
	<211> 437						
	<212> PRT <213> MCKY	7CCMD011112	G.				
15	<213> NCR	/ССТВЕННа	Я				
		/ССТВЕННО	синтези	рованная	последова	ательност	ГЬ
	<400> 29			_			
	Gln Val Gl	n Leu Lys	Glu Ala	Gly Pro	Gly Leu V	/al Gln E	Pro Thr Gln
	1	5			10		15
20	Thr Leu Sei		Cys Thr		Gly Phe S		Thr Ser Asp
	Gly Val His	20 Tro Ile	Ara Cla	25 Pro Pro	Cly Ive (30 Slu Tro Met
	35	, iib iic	nig oin	40	оту пув (45	ita iip nee
	Gly Ile Ile	e Tyr Tyr	Asp Gly	Gly Thr	Asp Tyr A	Asn Ser A	Ala Ile Lys
25	50		55		(50	
	_	a Ser Ile	-	Asp Thr	_	Ser Gln V	/al Phe Leu
	65		70		75		80
	Lys Ile Asi	n Ser Leu 85	GIn Thr	Asp Asp	Thr Ala I	4et Tyr 1	Tyr Cys Ala 95
30	Ara Ile His		Tvr Trp	Glv Gln		Met Val T	Thr Val Ser
	J	100	2 1	105	4		L10
	Ser Ala Lys	s Thr Thr	Pro Pro	Ser Val	Tyr Pro 1	Leu Ala E	Pro Gly Ser
	115			120		125	
		n Thr Asn		Val Thr			Val Lys Gly
35	130	Clu Pro	135	Val Thr		140 Ser Cly 9	Ser Leu Ser
	145	GIU IIO	150	var IIII	155	per Gry s	160
		L His Thr		Ala Val		Ser Asp I	Leu Tyr Thr
		165			170		175
40	Leu Ser Ser	Ser Val	Thr Val	Pro Ser	Ser Thr	Trp Pro S	Ser Glu Thr
		180		185			L90
	Val Thr Cys		Ala His	Pro Ala 200	Ser Ser !	Thr Lys V 205	/al Asp Lys
	Lys Ile Val		Asp Cys		Lys Pro (Cys Thr Val
45	210	1119	215	<u>-1</u> -1		220	., = = = = = = = = = = = = = = = = = = =
	Pro Glu Val	Ser Ser	Val Phe	Ile Phe	Pro Pro 1	Lys Pro I	Lys Asp Val
	225		230		235		240
	Leu Thr Ile	e Thr Leu	Thr Pro	Lys Val	Thr Cys V	/al Val V	7al Asp Ile

					245					250					255	
	Ser	Lys	Asp	Asp		Glu	Val	Gln	Phe	Ser	Trp	Phe	Val	Asp		Val
				260					265					270		
	Glu	Val	His	Thr	Ala	Gln	Thr	Gln	Pro	Arg	Glu	Glu	Gln	Phe	Asn	Ser
5			275					280					285			
	Thr	Phe	Arg	Ser	Val	Ser	Glu	Leu	Pro	Ile	Met	His	Gln	Asp	Trp	Leu
		290					295					300				
		Gly	Lys	Glu	Phe		Cys	Arg	Val	Asn		Ala	Ala	Phe	Pro	Ala
	305	_				310					315				_	320
10	Pro	Ile	GLu	Lys		Ile	Ser	Lys	Thr		GLy	Arg	Pro	Lys		Pro
	Cln	7707	Ш.т.т.	mb so	325	Dmo	Dago	Dwo	T	330	Cln	Mo+	777	T	335	T
	GIN	Val	TÀL	340	ile	Pro	Pro	Pro	LуS 345	GIU	GIN	мес	Ala	туs 350	Asp	гуѕ
	Val	Ser	T.e11		Cvs	Me+	Tle	Thr		Phe	Phe	Pro	Glu		Tle	Thr
15	vai	501	355		Oyb	1100	110	360	1101	1110	1110		365	1101	110	
	Val	Glu		Gln	Trp	Asn	Glv		Pro	Ala	Glu	Asn		Lvs	Asn	Thr
		370	-		-		375					380	_	_		
	Gln	Pro	Ile	Met	Asp	Thr	Asp	Gly	Ser	Tyr	Phe	Val	Tyr	Ser	Lys	Leu
	385					390					395					400
20	Asn	Val	Gln	Lys	Ser	Asn	Trp	Glu	Ala	Gly	Asn	Thr	Phe	Thr	Cys	Ser
					405					410					415	
	Val	Leu	His	Glu	Gly	Leu	His	Asn	His	His	Thr	Glu	Lys	Ser	Leu	Ser
				420					425					430		
	His	Ser		Gly	Lys											
25			435													
	ZO1/	^														
	<210		30													
	<21	1> 4	30 437													
	<212 <212	1> 4 2> 1	30 437 PRT	CCTB	енная	ī										
<i>30</i>	<21	1> 4 2> 1 3> 1	30 437	CCTB6	енная	Ŧ.										
30	<213 <213 <213	1> 4 2> 1 3> 1	30 437 PRT				гезиј	ован	іная	посј	тедоя	затеј	льнос	СТЬ		
30	<213 <213 <213 <220	1> 4 2> 1 3> 1 0> 3	30 437 PRT Искус				гезиј	OOBAH	іная	посл	тедон	зател	льнос	СТЬ		
30	<213 <213 <213 <220 <223 <400	1> 4 2> 1 3> 1 0> 3	30 437 PRT Mckyc Mckyc Mckyc	CCTB	Энно	СИН	-								Thr	Gln
30	<213 <213 <213 <220 <223 <400	1> 4 2> 1 3> 1 0> 3 3> 1	30 437 PRT Mckyc Mckyc Mckyc	CCTB	Энно	СИН	-								Thr 15	Gln
<i>30 35</i>	<211 <211 <211 <221 <220 <220 <400 Gln 1	1> 4 2> 1 3> 1 0> 3 3> 1	30 437 PRT Mckyo Mckyo 30 Gln	Leu Leu	енно Lys 5	синт	Ala	Gly	Pro Ser	Gly 10	Leu	Val	Gln	Pro Thr	15	
	<211 <212 <213 <223 <220 <400 Gln Thr	1> 4 2> 1 3> 1 0> 3> 1 0> 1 0> 1 Leu	30 437 PRT Mckyo Mckyo 30 Gln Ser	Leu Leu Leu 20	Eнно Lys 5 Thr	синт Glu Cys	Ala Thr	Gly Val	Pro Ser 25	Gly 10 Gly	Leu Phe	Val Ser	Gln Leu	Pro Thr	15 Ser	Asp
	<211 <212 <213 <223 <220 <400 Gln Thr	1> 4 2> 1 3> 1 0> 3> 1 0> 3 Val	30 437 PRT Mckyo Mckyo 30 Gln Ser	Leu Leu Leu 20	Eнно Lys 5 Thr	синт Glu Cys	Ala Thr	Gly Val Pro	Pro Ser 25	Gly 10 Gly	Leu Phe	Val Ser	Gln Leu Leu	Pro Thr	15 Ser	Asp
	<211 <212 <221 <222 <400 Gln Thr	1> 4 2> 1 3> 1 0> 3> 1 Val Leu Val	30 437 PRT Mckyc 30 Gln Ser His 35	Leu Leu 20 Trp	Lys 5 Thr	синт Glu Cys Arg	Ala Thr	Gly Val Pro 40	Pro Ser 25 Pro	Gly 10 Gly	Leu Phe Lys	Val Ser Gly	Gln Leu Leu 45	Pro Thr 30 Glu	15 Ser Trp	Asp Met
35	<211 <212 <221 <222 <400 Gln Thr	1> 4 2> 1 3> I 0> 3> I Val Leu Val Ile	30 437 PRT Mckyc 30 Gln Ser His 35	Leu Leu 20 Trp	Lys 5 Thr	синт Glu Cys Arg	Ala Thr Gln	Gly Val Pro 40	Pro Ser 25 Pro	Gly 10 Gly	Leu Phe Lys	Val Ser Gly Asn	Gln Leu Leu 45	Pro Thr 30 Glu	15 Ser Trp	Asp Met
	<21: <21: <21: <22: <22: <400 Gln Thr Gly Gly	1> 4 2> 1 3> 1 0> 3> 1 0> 1 10	30 437 PRT MCKYO 30 Gln Ser His 35 Ile	Leu Leu 20 Trp	Lys 5 Thr Ile	синт Glu Cys Arg Asp	Ala Thr Gln Gly 55	Gly Val Pro 40 Gly	Pro Ser 25 Pro	Gly 10 Gly Gly Asp	Leu Phe Lys Tyr	Val Ser Gly Asn 60	Gln Leu Leu 45 Ser	Pro Thr 30 Glu Ala	15 Ser Trp Ile	Asp Met Lys
35	<211 <212 <213 <221 <220 <400 Gln Thr Gly Gly Ser	1> 4 2> 1 3> I 0> 3> I Val Leu Val Ile	30 437 PRT MCKYO 30 Gln Ser His 35 Ile	Leu Leu 20 Trp	Lys 5 Thr Ile	Синт Glu Cys Arg Asp	Ala Thr Gln Gly 55	Gly Val Pro 40 Gly	Pro Ser 25 Pro	Gly 10 Gly Gly Asp	Leu Phe Lys Tyr	Val Ser Gly Asn 60	Gln Leu Leu 45 Ser	Pro Thr 30 Glu Ala	15 Ser Trp Ile	Asp Met Lys Leu
35	<21: <21: <21: <22: <400 Gln Thr Gly Gly Ser 65	1> 4 2> 1 3> 1 0> 3> 1 0> 1 10	30 437 PRT MCKYO 30 Gln Ser His 35 Ile Leu	Leu Leu 20 Trp Tyr	Lys 5 Thr Ile Tyr	Синт Glu Cys Arg Asp Ser 70	Ala Thr Gln Gly 55 Arg	Gly Val Pro 40 Gly Asp	Pro Ser 25 Pro Thr	Gly 10 Gly Gly Asp	Leu Phe Lys Tyr Lys 75	Val Ser Gly Asn 60 Ser	Gln Leu Leu 45 Ser	Pro Thr 30 Glu Ala Val	15 Ser Trp Ile Phe	Asp Met Lys Leu 80
35	<21: <21: <21: <22: <400 Gln Thr Gly Gly Ser 65	1> 4 2> 1 3> 1 0> 3> 1 0> 3 Val Leu Val Ile 50 Arg	30 437 PRT MCKYO 30 Gln Ser His 35 Ile Leu	Leu Leu 20 Trp Tyr	Lys 5 Thr Ile Tyr	Синт Glu Cys Arg Asp Ser 70	Ala Thr Gln Gly 55 Arg	Gly Val Pro 40 Gly Asp	Pro Ser 25 Pro Thr	Gly 10 Gly Gly Asp	Leu Phe Lys Tyr Lys 75	Val Ser Gly Asn 60 Ser	Gln Leu Leu 45 Ser	Pro Thr 30 Glu Ala Val	15 Ser Trp Ile Phe	Asp Met Lys Leu 80
35	<21: <21: <22: <22: <400 Gln Thr Gly Gly Ser 65 Lys	1> 4 2> 1 3> 1 0> 3> 1 0> 3 Val Leu Val Ile 50 Arg	30 437 PRT MCKYO 30 Gln Ser His 35 Ile Leu Asn	Leu Leu 20 Trp Tyr Ser	Lys 5 Thr Ile Tyr Ile Leu 85	Синт Glu Cys Arg Asp Ser 70 Gln	Ala Thr Gln Gly 55 Arg	Gly Val Pro 40 Gly Asp	Pro Ser 25 Pro Thr Asp	Gly 10 Gly Gly Asp Ser Thr 90	Leu Phe Lys Tyr Lys 75 Ala	Val Ser Gly Asn 60 Ser Met	Gln Leu Leu 45 Ser Gln Tyr	Pro Thr 30 Glu Ala Val Tyr	15 Ser Trp Ile Phe Cys 95	Asp Met Lys Leu 80 Ala
<i>35 40</i>	<21: <21: <22: <22: <400 Gln Thr Gly Gly Ser 65 Lys	1> 4 2> 1 3> 1 0> 3> 7 Val Leu Val Ile 50 Arg	30 437 PRT MCKYO 30 Gln Ser His 35 Ile Leu Asn	Leu Leu 20 Trp Tyr Ser	Lys 5 Thr Ile Tyr Ile Leu 85	Синт Glu Cys Arg Asp Ser 70 Gln	Ala Thr Gln Gly 55 Arg	Gly Val Pro 40 Gly Asp	Pro Ser 25 Pro Thr Asp	Gly 10 Gly Gly Asp Ser Thr 90	Leu Phe Lys Tyr Lys 75 Ala	Val Ser Gly Asn 60 Ser	Gln Leu Leu 45 Ser Gln Tyr	Pro Thr 30 Glu Ala Val Tyr	15 Ser Trp Ile Phe Cys 95	Asp Met Lys Leu 80 Ala
<i>35 40</i>	<21: <21: <22: <22: <400 Gln Thr Gly Gly Ser 65 Lys Arg	1> 4 2> 1 3> 1 0> 3> 7 Val Leu Val Ile 50 Arg	30 437 PRT MCKYO 30 Gln Ser His 35 Ile Leu Asn	Leu Leu 20 Trp Tyr Ser Ser Phe 100	Lys 5 Thr Ile Tyr Ile Leu 85 Asp	Синт Glu Cys Arg Asp Ser 70 Gln	Ala Thr Gln Gly 55 Arg Thr	Gly Val Pro 40 Gly Asp Asp	Pro Ser 25 Pro Thr Thr Asp Gln 105	Gly 10 Gly Gly Asp Ser Thr 90 Gly	Leu Phe Lys Tyr Lys 75 Ala	Val Ser Gly Asn 60 Ser Met	Gln Leu Leu 45 Ser Gln Tyr	Pro Thr 30 Glu Ala Val Tyr Thr 110	15 Ser Trp Ile Phe Cys 95 Val	Asp Met Lys Leu 80 Ala Ser

```
Ala Ala Gln Thr Asn Ser Met Val Thr Leu Gly Cys Leu Val Lys Gly
         130
                            135
                                                 140
     Tyr Phe Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ser Leu Ser
                         150
                                            155
     Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr
5
                     165
                                        170
     Leu Ser Ser Ser Val Thr Val Pro Ser Ser Thr Trp Pro Ser Glu Thr
                 180
                                     185
     Val Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys
             195
                                 200
                                                     205
10
     Lys Ile Val Pro Arg Asp Cys Gly Cys Lys Pro Cys Ile Cys Thr Val
                             215
                                                 220
     Lys Glu Val Ser Lys Val Phe Ile Phe Pro Pro Lys Pro Lys Asp Val
                         230
                                             235
15
     Leu Thr Ile Thr Leu Thr Pro Lys Val Thr Cys Val Val Val Asp Ile
                     245
                                         250
     Ser Lys Asp Asp Pro Glu Val Gln Phe Ser Trp Phe Val Asp Asp Val
                 260
                                     265
     Glu Val His Thr Ala Gln Thr Gln Pro Arg Glu Glu Gln Phe Asn Ser
20
                                 280
     Thr Phe Arg Ser Val Ser Glu Leu Pro Ile Met His Gln Asp Trp Leu
                             295
                                                 300
     Asn Gly Lys Glu Phe Lys Cys Arg Val Asn Ser Ala Ala Phe Pro Ala
                         310
                                             315
     Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Arg Pro Lys Ala Pro
25
                     325
                                         330
     Gln Val Tyr Thr Ile Pro Pro Pro Lys Glu Gln Met Ala Lys Asp Lys
                                     345
     Val Ser Leu Thr Cys Met Ile Thr Asp Phe Phe Pro Glu Asp Ile Thr
                                 360
                                                     365
30
     Val Glu Trp Gln Trp Asn Gly Gln Pro Ala Glu Asn Tyr Lys Asn Thr
         370
                             375
                                                 380
     Gln Pro Ile Met Asp Thr Asp Gly Ser Tyr Phe Val Tyr Ser Lys Leu
                         390
                                             395
35
     Asn Val Gln Lys Ser Asn Trp Glu Ala Gly Asn Thr Phe Thr Cys Ser
                     405
                                         410
     Val Leu His Glu Gly Leu His Asn His His Thr Glu Lys Ser Leu Ser
                 420
                                    425
                                                         430
     His Ser Pro Gly Lys
             435
40
     <210> 31
     <211> 437
     <212> PRT
     <213> Искусственная
     <220>
45
     <223> искусственно синтезированная последовательность
     Gln Val Gln Leu Lys Glu Ala Gly Pro Gly Leu Val Gln Pro Thr Gln
```

	1				5					10					15	
	Thr	Leu	Ser	Leu 20	Thr	Cys	Thr	Val	Ser 25	Gly	Phe	Ser	Leu	Thr 30	Ser	Asp
5	Gly	Val	His 35	Trp	Ile	Arg	Gln	Pro 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Met
	Gly	Ile 50	Ile	Tyr	Tyr	Asp	Gly 55	Gly	Thr	Asp	Tyr	Asn 60	Ser	Ala	Ile	Lys
	Ser 65	Arg	Leu	Ser	Ile	Ser 70	Arg	Asp	Thr	Ser	Lys 75	Ser	Gln	Val	Phe	Leu 80
10	Lys	Ile	Asn	Ser	Leu 85	Gln	Thr	Asp	Asp	Thr 90	Ala	Met	Tyr	Tyr	Cys 95	Ala
	Arg	Ile	His	Phe 100	Asp	Tyr	Trp	Gly	Gln 105	Gly	Val	Met	Val	Thr 110	Val	Ser
15	Ser	Ala	Lys 115	Thr	Thr	Pro	Pro	Ser 120	Val	Tyr	Pro	Leu	Ala 125	Pro	Gly	Ser
		130					135				_	140		Val	-	-
	Tyr 145	Phe	Pro	Glu	Pro	Val 150	Thr	Val	Thr	Trp	Asn 155	Ser	Gly	Ser	Leu	Ser 160
20		Gly	Val	His	Thr		Pro	Ala	Val	Leu		Ser	Asp	Leu	Tyr	
					165					170					175	
	Leu	Ser	Ser	Ser 180	Val	Thr	Val	Pro	Ser 185	Ser	Thr	Trp	Pro	Ser 190	Glu	Thr
	Val	Thr	Cys	Asn	Val	Ala	His	Pro	Ala	Ser	Ser	Thr	Lys	Val	Asp	Lys
25			195					200					205			
	Lys	210	Val	Pro	Arg	Asp	Cys 215	Gly	Cys	Lys	Pro	Cys 220	lle	Cys	Glu	Pro
	Asn 225	Glu	Val	Glu	Asp	Val 230	Phe	Ile	Phe	Pro	Pro 235	Lys	Pro	Lys	Asp	Val 240
30		Thr	Ile	Thr	Leu		Pro	Lys	Val	Thr		Val	Val	Val	Asp	
					245			_		250	_				255	
	Ser	Lys	Asp	Asp 260	Pro	Glu	Val	Gln	Phe 265	Ser	Trp	Phe	Val	Asp 270	Asp	Val
35	Glu	Val	His 275	Thr	Ala	Gln	Thr	Gln 280	Pro	Arg	Glu	Glu	Gln 285	Phe	Asn	Ser
	Thr	Phe 290	Arg	Ser	Val	Ser	Glu 295	Leu	Pro	Ile	Met	His 300	Gln	Asp	Trp	Leu
	Asn 305	Gly	Lys	Glu	Phe	Lys 310	Cys	Arg	Val	Asp	Ser 315	Ala	Ala	Phe	Pro	Ala 320
40				_	325			_		330	_	_		Lys	335	
				340					345					Lys 350		
45			355					360					365	Asp		
	Val	Glu 370	Trp	Gln	Trp	Asn	Gly 375	Gln	Pro	Ala	Glu	Asn 380	Tyr	Lys	Asn	Thr
	Gln	Pro	Ile	Met	Asp	Thr	Asp	Gly	Ser	Tyr	Phe	Val	Tyr	Ser	Lys	Leu

```
385
                         390
                                              395
                                                                  400
     Asn Val Gln Lys Ser Asn Trp Glu Ala Gly Asn Thr Phe Thr Cys Ser
                     405
                                         410
     Val Leu His Glu Gly Leu His Asn His His Thr Glu Lys Ser Leu Ser
                 420
                                     425
                                                          430
5
     His Ser Pro Gly Lys
             435
     <210> 32
     <211> 213
     <212> PRT
10
     <213> Искусственная
     <220>
     <223> искусственно синтезированная последовательность
     <400> 32
15
     Asp Ile Val Leu Thr Gln Ser Pro Thr Thr Ile Ala Ala Ser Pro Gly
                                         10
     Glu Lys Val Thr Ile Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Met
                 20
                                     25
     Tyr Trp Tyr Gln Gln Lys Ser Gly Ala Ser Pro Lys Leu Trp Ile Tyr
20
                                 40
     Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Asn Arg Phe Ser Gly Ser
                             55
     Gly Ser Gly Thr Ser Tyr Ser Leu Ala Ile Asn Thr Met Glu Thr Glu
                         70
                                              75
     Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Thr Pro Leu Thr
25
                     85
                                         90
     Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala Pro
                 100
                                     105
     Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln Leu Thr Ser Gly Gly
                                 120
30
     Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile Asn
         130
                             135
                                                  140
     Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu Asn
                         150
                                             155
35
     Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser Ser
                     165
                                         170
     Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr Thr
                 180
                                     185
     Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser Phe
             195
                                 200
                                                      205
40
     Asn Arg Asn Glu Cys
         210
     <210> 33
     <211> 119
     <212> PRT
45
     <213> Искусственная
     <220>
     <223> искусственно синтезированная последовательность
```

	< 400	0> 3	33													
	Gln 1	Val	Gln	Leu	Gln 5	Glu	Ser	Gly	Pro	Gly 10	Leu	Val	Lys	Pro	Ser 15	Glu
5	Thr	Leu	Ser	Leu 20	Thr	Cys	Ala	Val	Ser 25	Gly	His	Ser	Ile	Ser 30	His	Asp
	His	Ala	Trp	Ser	Trp	Val	Arg	Gln 40	Pro	Pro	Gly	Glu	Gly 45	Leu	Glu	Trp
	Ile	Gly 50	Phe	Ile	Ser	Tyr	Ser 55	Gly	Ile	Thr	Asn	Tyr 60	Asn	Pro	Ser	Leu
10	Gln 65	Gly	Arg	Val	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr
	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
15	Ala	Arg	Ser	Leu 100	Ala	Arg	Thr	Thr	Ala 105	Met	Asp	Tyr	Trp	Gly 110	Glu	Gly
	Thr	Leu	Val 115	Thr	Val	Ser	Ser									
	<210 <211		34 443													
20	<212 <213	_	PRT Иску	CCTB	енная	Я										
	<220 <220	_	иску	CCTB	енно	СИН	гезиј	ровал	ная	пос	педог	зател	пьно	СТЬ		
	<400	0> 3	34													
25	Gln 1	Val	Gln	Leu	Gln 5	Glu	Ser	Gly	Pro	Gly 10	Leu	Val	Lys	Pro	Ser 15	Glu
	Thr	Leu	Ser	Leu 20	Thr	Cys	Ala	Val	Ser 25	Gly	His	Ser	Ile	Ser 30	His	Asp
30	His	Ala	Trp 35	Ser	Trp	Val	Arg	Gln 40	Pro	Pro	Gly	Glu	Gly 45	Leu	Glu	Trp
	Ile	Gly 50	Phe	Ile	Ser	Tyr	Ser 55	Gly	Ile	Thr	Asn	Tyr 60	Asn	Pro	Ser	Leu
	Gln 65	Gly	Arg	Val	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
35	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
	Ala	Arg	Ser	Leu 100	Ala	Arg	Thr	Thr	Ala 105	Met	Asp	Tyr	Trp	Gly 110	Glu	Gly
40	Thr	Leu	Val 115	Thr	Val	Ser	Ser	Ala 120	Lys	Thr	Thr	Pro	Pro 125	Ser	Val	Tyr
	Pro	Leu 130	Ala	Pro	Gly	Ser	Ala 135	Ala	Gln	Thr	Asn	Ser 140	Met	Val	Thr	Leu
	Gly 145	Cys	Leu	Val	Lys	Gly 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Thr	Trp
45	Asn	Ser	Gly	Ser	Leu 165	Ser	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu
	Gln	Ser	Asp	Leu	Tyr	Thr	Leu	Ser	Ser	Ser	Val	Thr	Val	Pro	Ser	Ser

185

190

180

```
Thr Trp Pro Ser Glu Thr Val Thr Cys Asn Val Ala His Pro Ala Ser
            195
                                 200
     Ser Thr Lys Val Asp Lys Lys Ile Val Pro Arg Asp Cys Gly Cys Lys
                             215
                                                 220
     Pro Cys Ile Cys Thr Val Pro Glu Val Ser Ser Val Phe Ile Phe Pro
5
                         230
                                             235
     Pro Lys Pro Lys Asp Val Leu Thr Ile Thr Leu Thr Pro Lys Val Thr
                     245
                                         250
     Cys Val Val Asp Ile Ser Lys Asp Pro Glu Val Gln Phe Ser
                 260
                                     265
10
     Trp Phe Val Asp Asp Val Glu Val His Thr Ala Gln Thr Gln Pro Arg
                                 280
     Glu Glu Gln Phe Asn Ser Thr Phe Arg Ser Val Ser Glu Leu Pro Ile
                             295
         290
                                                 300
15
     Met His Gln Asp Trp Leu Asn Gly Lys Glu Phe Lys Cys Arg Val Asn
                         310
                                             315
     Ser Ala Ala Phe Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys
                     325
                                         330
     Gly Arg Pro Lys Ala Pro Gln Val Tyr Thr Ile Pro Pro Pro Lys Glu
20
                 340
                                    345
     Gln Met Ala Lys Asp Lys Val Ser Leu Thr Cys Met Ile Thr Asp Phe
                                 360
                                                     365
     Phe Pro Glu Asp Ile Thr Val Glu Trp Gln Trp Asn Gly Gln Pro Ala
                             375
                                                 380
     Glu Asn Tyr Lys Asn Thr Gln Pro Ile Met Asp Thr Asp Gly Ser Tyr
25
                         390
                                             395
     Phe Val Tyr Ser Lys Leu Asn Val Gln Lys Ser Asn Trp Glu Ala Gly
                     405
                                         410
     Asn Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu His Asn His His
                 420
                                     425
                                                         430
30
     Thr Glu Lys Ser Leu Ser His Ser Pro Gly Lys
             435
                                 440
     <210> 35
     <211> 443
35
     <212> PRT
     <213> Искусственная
     <220>
     <223> искусственно синтезированная последовательность
     Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu
40
                                         10
     Thr Leu Ser Leu Thr Cys Ala Val Ser Gly His Ser Ile Ser His Asp
     His Ala Trp Ser Trp Val Arg Gln Pro Pro Gly Glu Gly Leu Glu Trp
                                 40
45
     Ile Gly Phe Ile Ser Tyr Ser Gly Ile Thr Asn Tyr Asn Pro Ser Leu
                             55
```

Gln Gly Arg Val Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr

	65					70					75					80
	Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
					85					90					95	
	Ala	Arg	Ser		Ala	Arg	Thr	Thr		Met	Asp	Tyr	Trp	Gly	Glu	Gly
5	m1	T	T 7 - 7	100	T 7 - 7	0	0	70 T -	105	m1	m1	D	D	110	T7 - 7	
	Thr	Leu	vai 115	Thr	val	ser	ser	120	Lys	Thr	Thr	Pro	Pro 125	Ser	val	Tyr
	Pro	Leu		Pro	Glv	Ser	Ala		Gln	Thr	Asn	Ser		Val	Thr	Leu
		130			- 1		135					140				
10	Gly	Cys	Leu	Val	Lys	Gly	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Thr	Trp
	145					150					155					160
	Asn	Ser	Gly	Ser	Leu	Ser	Ser	Gly	Val	His	Thr	Phe	Pro	Ala	Val	Leu
					165					170					175	
	Gln	Ser	Asp		Tyr	Thr	Leu	Ser		Ser	Val	Thr	Val	Pro	Ser	Ser
15	Πh ×	m xx	Dro	180	C1.,	Πh∽	77 - 1	mbγ	185	7 an	77 - 1	7.1.	и; с	190 Pro	7.] ~	Cor
	1111	ттр	195	ser	GIU	TIIL	val	200	СУБ	ASII	val	АТа	205	PIO	Ala	ser
	Ser	Thr		Val	Asp	Lys	Lys		Val	Pro	Arq	Asp		Gly	Cys	Lys
		210	_		-	_	215				_	220	_	_	-	-
20	Pro	Cys	Ile	Cys	Glu	Pro	Asn	Glu	Val	Glu	Asp	Val	Phe	Ile	Phe	Pro
	225					230					235					240
	Pro	Lys	Pro	Lys		Val	Leu	Thr	Ile		Leu	Thr	Pro	Lys		Thr
	~				245	- 1	a	-	-	250	<u>.</u>	G 1		G.1	255	~
25	Cys	val	val	260	Asp	IIe	ser	Lys	265	Asp	Pro	Glu	val	Gln 270	Pne	ser
25	Tro	Phe	Val		Asn	Val	Glu	Val		Thr	Ala	Gln	Thr	Gln	Pro	Ara
		1110	275	1101	1101		0_0	280			1120	0_11	285	0		9
	Glu	Glu	Gln	Phe	Asn	Ser	Thr	Phe	Arg	Ser	Val	Ser	Glu	Leu	Pro	Ile
		290					295					300				
30	Met	His	Gln	Asp	Trp	Leu	Asn	Gly	Lys	Glu	Phe	Lys	Cys	Arg	Val	Asp
	305					310					315					320
	Ser	Ala	Ala	Phe		Ala	Pro	Ile	Glu		Thr	Ile	Ser	Lys		Lys
	Clv	λκα	Dro	T.170	325	Dro	Gln	17 a l	Пτ.7Υ	330 Thr	Tlo	Dro	Dro	Pro	335	Clu
35	ОТУ	7119	110	340	πια	110	OIII	vai	345	T111	110	110	110	350	шуЗ	Olu
	Gln	Met	Ala		Asp	Lys	Val	Ser		Thr	Cys	Met	Ile	Thr	Asp	Phe
			355					360					365			
	Phe	Pro	Glu	Asp	Ile	Thr	Val	Glu	Trp	Gln	Trp	Asn	Gly	Gln	Pro	Ala
		370					375					380				
40		Asn	Tyr	Lys	Asn		Gln	Pro	Ile	Met		Thr	Asp	Gly	Ser	
	385	77-1	Птт»	502	T 170	390	7 an	77-1	Cln	T 170	395	7 an	m xx	Clu	7.] ~	400
	riie	val	тут	ser	цуS 405	ьеи	ASII	val	GIII	цуS 410	ser	ASII	пр	Glu	415	СТУ
	Asn	Thr	Phe	Thr		Ser	Val	Leu	His		Glv	Leu	His	Asn		His
45				420	-				425		_			430		
	Thr	Glu	Lys	Ser	Leu	Ser	His	Ser	Pro	Gly	Lys					
			435					440								
	<210)> (36													

```
<211> 214
     <212> PRT
     <213> Искусственная
     <223> искусственно синтезированная последовательность
5
     <400> 36
     Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
                                         10
     Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Ile Ser Ser Tyr
                                     25
                 20
10
     Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Ile
                                 40
     Tyr Tyr Thr Ser Arg Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly
                             55
                                                  60
     Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Leu Gln Pro
15
                         70
                                             75
     Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Gln Gly Asn Thr Leu Pro Tyr
                     85
                                         90
     Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala
20
                 100
                                     105
     Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly
             115
                                 120
     Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala
                             135
                                                  140
     Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln
25
     145
                         150
                                             155
     Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser
                     165
                                         170
     Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr
                 180
                                     185
30
     Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser
             195
                                 200
                                                      205
     Phe Asn Arg Gly Glu Cys
         210
35
     <210> 37
     <211> 443
     <212> PRT
     <213> Искусственная
     <223> искусственно синтезированная последовательность
40
     <400> 37
     Asp Val Gln Leu Gln Glu Ser Gly Pro Val Leu Val Lys Pro Ser Gln
     Ser Leu Ser Leu Thr Cys Thr Val Thr Gly Tyr Ser Ile Thr Ser Asp
                                      25
45
     His Ala Trp Ser Trp Ile Arg Gln Phe Pro Gly Asn Lys Leu Glu Trp
                                 40
     Met Gly Tyr Ile Ser Tyr Ser Gly Ile Thr Thr Tyr Asn Pro Ser Leu
```

		50					55					60				
	Lys	Ser	Arg	Ile	Ser	Ile	Thr	Arg	Asp	Thr	Ser	Lys	Asn	Gln	Phe	Phe
	65					70					75					80
5	Leu	Gln	Leu	Asn	Ser 85	Val	Thr	Thr	Gly	Asp 90	Thr	Ser	Thr	Tyr	Tyr 95	Cys
	Ala	Arg	Ser	Leu 100	Ala	Arg	Thr	Thr	Ala 105	Met	Asp	Tyr	Trp	Gly 110	Gln	Gly
	Thr	Ser	Val	Thr	Val	Ser	Ser	Ala 120	Lys	Thr	Thr	Pro	Pro 125	Ser	Val	Tyr
10	Pro	Leu 130	Ala	Pro	Gly	Ser	Ala 135	Ala	Gln	Thr	Asn	Ser 140	Met	Val	Thr	Leu
	Gly	Cys	Leu	Val	Lys	Gly	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Thr	Trp
	145					150					155					160
15	Asn	Ser	Gly	Ser	Leu 165	Ser	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu
	Gln	Ser	Asp	Leu	Tyr	Thr	Leu	Ser	Ser	Ser	Val	Thr	Val	Pro	Ser	Ser
				180					185					190		
	Thr	Trp	Pro	Ser	Glu	Thr	Val	Thr	Cys	Asn	Val	Ala	His	Pro	Ala	Ser
			195					200					205			
20	Ser		Lys	Val	Asp	Lys		Ile	Val	Pro	Arg		Cys	Gly	Cys	Lys
	_	210	1	~			215	~ 1		~	~	220	-1		-1	_
		Cys	Ile	Суѕ	Thr	230	Pro	Glu	val	ser	Ser 235	val	Pne	IIe	Pne	
	225 Pro	T.378	Pro	T.179	Asn		T. 211	Thr	Tle	Thr		Thr	Pro	T.179	Val	240 Thr
25	110	шуз	110	шуз	245	vai	пси	1111	110	250	пси	1111	110	шуз	255	1111
23	Cvs	Val	Val	Val		Ile	Ser	Lvs	Asp		Pro	Glu	Val	Gln		Ser
	_			260	-			_	265	-				270		
	Trp	Phe	Val 275	Asp	Asp	Val	Glu	Val 280	His	Thr	Ala	Gln	Thr 285	Gln	Pro	Arg
30	Glu	Glu	Gln	Phe	Asn	Ser	Thr		Arg	Ser	Val	Ser		Leu	Pro	Ile
		290					295					300				
	Met	His	Gln	Asp	Trp	Leu	Asn	Gly	Lys	Glu	Phe	Lys	Cys	Arg	Val	Asn
	305					310					315					320
35	Ser	Ala	Ala	Phe	Pro 325	Ala	Pro	Ile	Glu	Lys 330	Thr	Ile	Ser	Lys	Thr 335	Lys
	Gly	Arg	Pro	_	Ala	Pro	Gln	Val	_	Thr	Ile	Pro	Pro		Lys	Glu
	G 1	3.6	7.7	340	-	-		a	345	m1	~	3.6	- 1	350	-	D1
	GIn	Met	Ala 355	Lys	Asp	Lys	val	360	Leu	Thr	Cys	Met	365	Thr	Asp	Pne
40	Phe	Pro	Glu	Asp	Ile	Thr	Val	Glu	Trp	Gln	Trp	Asn	Gly	Gln	Pro	Ala
		370					375					380				
	Glu	Asn	Tyr	Lys	Asn	Thr	Gln	Pro	Ile	Met	Asp	Thr	Asp	Gly	Ser	Tyr
	385					390					395					400
45	Phe	Val	Tyr	Ser	Lys	Leu	Asn	Val	Gln	Lys 410	Ser	Asn	Trp	Glu	Ala 415	Gly
⊤ J	Asn	Thr	Phe	Thr		Ser	Val	Len	His		Glv	Len	His	Asn		His
	-1011			420	-10				425		1		0	430		0
	Thr	Glu	Lys	Ser	Leu	Ser	His	Ser	Pro	Gly	Lys					

			435					440								
	<210)> (38													
	<211	.> 4	443													
	<212	!> 1	PRT													
5	<213	3> 1	Искус	ССТВ	енная	Ŧ										
	<220)>														
	<223	3> 1	искус	ССТВ	енно	СИН	гезир	рован	ная	посл	тедон	ватеј	тьнос	СТЬ		
	<400)> (38													
	Asp	Val	Gln	Leu	Gln	Glu	Ser	Gly	Pro	Val	Leu	Val	Lys	Pro	Ser	Gln
10	1				5					10					15	
	Ser	Leu	Ser	Leu 20	Thr	Cys	Thr	Val	Thr 25	Gly	Tyr	Ser	Ile	Thr	Ser	Asp
	піс	717	Trp		Trn	т10	λκα	Cln		Dro	C1 17	7 an	Twe		Cl.,	Trn
	1113	АТА	35	Del	110	116	ALG	40	THE	110	GIY	ASII	45	шеи	GIU	110
15	Met	Gly	Tyr	Ile	Ser	Tyr	Ser	Gly	Ile	Thr	Thr	Tyr	Asn	Pro	Ser	Leu
		50					55					60				
	Lys	Ser	Arg	Ile	Ser	Ile	Thr	Arg	Asp	Thr	Ser	Lys	Asn	Gln	Phe	Phe
	65					70					75					80
	Leu	Gln	Leu	Asn	Ser	Val	Thr	Thr	Gly	Asp	Thr	Ser	Thr	Tyr		Cys
20					85					90					95	
	Ala	Arg	Ser	Leu	Ala	Arg	Thr	Thr	Ala	Met	Asp	Tyr	Trp	Gly	Gln	Gly
				100					105					110		
	Thr	Ser	Val	Thr	Val	Ser	Ser		Lys	Thr	Thr	Pro		Ser	Val	Tyr
	_	_	115	_	~ 1	~		120	~ 3		_	~	125	7	 1	_
25	Pro		Ala	Pro	GIY	ser		Ala	GIn	Thr	Asn		Met	val	Thr	Leu
	C1 57	130	Leu	Val	Twe	C1 17	135	Dho	Dro	Clu	Dro	140	Πhγ	17a l	Πрν	Trn
	145	Суз	цеи	vai	пуз	150	тут	rne	FIO	GIU	155	vai	1111	vaı	TIIL	160
		Ser	Gly	Ser	T.e11		Ser	Glv	Val	His		Phe	Pro	Δla	Val	
30	11011	DCI	Oly	DCI	165	DCI	DCI	Oly	Vai	170	1111	1110	110	7114	175	шси
50	Gln	Ser	Asp	Leu		Thr	Leu	Ser	Ser		Val	Thr	Val	Pro		Ser
			- 1	180					185					190		
	Thr	Trp	Pro	Ser	Glu	Thr	Val	Thr	Cys	Asn	Val	Ala	His	Pro	Ala	Ser
			195					200					205			
35	Ser	Thr	Lys	Val	Asp	Lys	Lys	Ile	Val	Pro	Arg	Asp	Cys	Gly	Cys	Lys
		210					215					220				
	Pro	Cys	Ile	Cys	Thr	Val	Lys	Glu	Val	Ser	Lys	Val	Phe	Ile	Phe	Pro
	225					230					235					240
	Pro	Lys	Pro	Lys	Asp	Val	Leu	Thr	Ile	Thr	Leu	Thr	Pro	Lys	Val	Thr
40					245					250					255	
	Cys	Val	Val	Val	Asp	Ile	Ser	Lys	Asp	Asp	Pro	Glu	Val	Gln	Phe	Ser
				260					265					270		
	Trp	Phe	Val	Asp	Asp	Val	Glu	Val	His	Thr	Ala	Gln	Thr	Gln	Pro	Arg
			275					280					285			
45			Gln	Phe	Asn	Ser		Phe	Arg	Ser	Val		Glu	Leu	Pro	Ile
		290					295					300				
	Met	His	Gln	Asp	Trp		Asn	Gly	Lys	Glu		Lys	Cys	Arg	Val	
	305					310					315					320

	Ser	Ala	Ala	Phe	Pro 325	Ala	Pro	Ile	Glu	Lys 330	Thr	Ile	Ser	Lys	Thr 335	Lys
	Gly	Arg	Pro	Lys 340	Ala	Pro	Gln	Val	Tyr 345	Thr	Ile	Pro	Pro	Pro 350	Lys	Glu
5	Gln	Met	Ala 355	Lys	Asp	Lys	Val	Ser 360	Leu	Thr	Cys	Met	Ile 365	Thr	Asp	Phe
	Phe	Pro 370	Glu	Asp	Ile	Thr	Val 375	Glu	Trp	Gln	Trp	Asn 380	Gly	Gln	Pro	Ala
10	Glu 385	Asn	Tyr	Lys	Asn	Thr 390	Gln	Pro	Ile	Met	Asp 395	Thr	Asp	Gly	Ser	Tyr 400
	Phe	Val	Tyr	Ser	Lys 405	Leu	Asn	Val	Gln	Lys 410	Ser	Asn	Trp	Glu	Ala 415	Gly
	Asn	Thr	Phe	Thr 420	Cys	Ser	Val	Leu	His 425	Glu	Gly	Leu	His	Asn 430	His	His
15	Thr	Glu	Lys 435	Ser	Leu	Ser	His	Ser 440	Pro	Gly	Lys					
	<210 <211 <211	1> 4	39 450 PRT													
20	<213	_	Искус	CCTB	енная	Ŧ										
	<220	_														
	<223 <400		искус 39	CTBE	энно	СИН	resut	ован	ная	HOCJ	тедон	sa Tej	тьнос),I.P		
	Asp	Ile	Val	Met	Thr	Gln	Ser	Pro	Leu	Ser	Leu	Pro	Val	Thr	Pro	Gly
25	1				5					10					15	
	Glu	Pro	Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Gln	Ser	Leu	Val 30	His	Ser
	Asn	Arg	Asn 35	Thr	Tyr	Leu	His	Trp 40	Tyr	Gln	Gln	Lys	Pro 45	Gly	Gln	Ala
30		Arg 50				_	55				_	60		_		
	65	Arg				70					75					80
35	Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Val	Gly	Val 90	Tyr	Tyr	Cys	Ser	Gln 95	Asn
	Thr	His	Val	Pro 100	Pro	Thr	Phe	Gly	Gln 105	Gly	Thr	Lys	Leu	Glu 110	Ile	Lys
	Ser	Ser	Ala 115	Ser	Thr	Lys	Gly	Pro 120	Ser	Val	Phe	Pro	Leu 125	Ala	Pro	Ser
40	Ser	Lys 130	Ser	Thr	Ser	Gly	Gly 135	Thr	Ala	Ala	Leu	Gly 140	Cys	Leu	Val	Lys
	Asp 145	Tyr	Phe	Pro	Glu	Pro 150	Val	Thr	Val	Ser	Trp 155	Asn	Ser	Gly	Ala	Leu 160
45	Thr	Ser	Gly	Val	His 165	Thr	Phe	Pro	Ala	Val 170	Leu	Gln	Ser	Ser	Gly 175	Leu
	Tvr	Ser	T.e11	Ser	Ser	Val	Val	Thr	Val	Pro	Ser	Ser	Ser	Leu	Glv	Thr
	-1-	001	пса	180	DCI	vai			185	110	501	501		190	1	

	195		20	00		205
	Asp Lys Lys	Val Glu I	Pro Lys Se	er Cys Asp	Lys Thr	His Thr Cys Pro
	210		215		220	
	Pro Cys Pro	Ala Pro (Glu Ala Ai	la Gly Gly	Pro Ser	Val Phe Leu Phe
5	225	2	230		235	240
	Pro Pro Lys	Pro Lys A	Asp Thr Le	eu Met Ile	Ser Arg	Thr Pro Glu Val
		245		250		255
	Thr Cys Val	Val Val A	Asp Val Se	er His Glu	Asp Pro	Glu Val Lys Phe
		260		265		270
10		Val Asp (-			Lys Thr Lys Pro
	275			80		285
	_	Gln Tyr A		hr Tyr Arg		Ser Val Leu Thr
	290		295		300	
		_	_	sn Gly Lys	=	Lys Cys Lys Val
15	305		310	-1 01	315	320
	Ser Asn Lys		Pro Ala Pi		Lys Thr	Ile Ser Lys Ala
	T.va Cl.v Cla	325	Clu Dwo C	330	mbw Tou	335
	TAS GIA GIU	340	GIU PIO G.	un vai cys 345	IIII Leu	Pro Pro Ser Arg 350
20	Asn Clu Leu		Asn Gln Va		Trn Cvs	Leu Val Lys Gly
20	355			60		365
						Asn Gly Gln Pro
	370	001 110p	375	ar 014 11p	380	
		Tyr Lys :		ro Pro Val		Ser Asp Gly Ser
25	385		390		395	400
	Phe Phe Leu	Tyr Ser 1	Lys Leu Th	hr Val Asp	Lys Ser	Arg Trp Gln Gln
		405		410		415
	Gly Asn Val	Phe Ser (Cys Ser Va	al Met His	Glu Ala	Leu His Asn His
		420		425		430
30	Tyr Thr Gln	Lys Ser 1	Leu Ser Le	eu Ser Pro	His His	His His His His
	435		4	40		445
	His His					
	450					
	<210> 40					
35	<211> 446					
	<212> PRT					
	<213> Иску <220>	сственная				
		CCMBAUUA		ванная пос.	паповашап	LUOCML
40	<400> 40	CCIBCIIIO (cmii compoi	Baillian 1100.	ледовател	БПОСТБ
40		Met Thr (Gln Ser Pi	ro Leu Ser	Leu Pro	Val Thr Pro Gly
	1	5		10	Lou IIo	15
	_	-	Ser Cvs Ai		Gln Ser	Leu Val His Ser
		20	- 1 - 11-	25		30
45	Asn Arg Asn		Leu His T		Gln Lys	Pro Gly Gln Ala
	35	<u> </u>	4 (45
	Pro Arg Leu	Leu Ile :	Tyr Lys Va	al Ser Asn	Arg Phe	Ser Gly Val Pro
	50		55		60	

	Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile 80
	Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Val	Gly	Val 90	Tyr	Tyr	Cys	Ser	Gln 95	Asn
5	Thr	His	Val	Pro 100	Pro	Thr	Phe	Gly	Gln 105	Gly	Thr	Lys	Leu	Glu 110	Ile	Lys
	Ser	Ser	Ala 115	Ser	Thr	Lys	Gly	Pro 120	Ser	Val	Phe	Pro	Leu 125	Ala	Pro	Ser
10	Ser	Lys 130	Ser	Thr	Ser	Gly	Gly 135	Thr	Ala	Ala	Leu	Gly 140	Cys	Leu	Val	Lys
	_	Tyr	Phe	Pro	Glu		Val	Thr	Val	Ser	_	Asn	Ser	Gly	Ala	
	145					150	_,	_			155		_	_		160
			Gly		165					170					175	
15	Tyr	Ser	Leu		Ser	Val	Val	Thr		Pro	Ser	Ser	Asn		Gly	Thr
	Cln	Πhr	Tyr	180	Cvc	7 an	Val	7 cn	185	Tue	Dro	Sor	7 an	190	Twe	7757
	GIII	TIII	195	TIII	СУБ	ASII	vai	200	1112	пуз	FLO	SET	205	TIIL	пуз	vai
	Asp	Lys	Thr	Val	Glu	Arq	Lys		Cys	Val	Glu	Cys		Pro	Cys	Pro
20	_	210					215		_			220			_	
	Ala	Pro	Pro	Ala	Ala	Ala	Pro	Ser	Val	Phe	Leu	Phe	Pro	Pro	Lys	Pro
	225					230					235					240
	Lys	Asp	Thr	Leu	Met 245	Ile	Ser	Arg	Thr	Pro 250	Glu	Val	Thr	Cys	Val 255	Val
25	Val	Asp	Val	Ser	His	Glu	Asp	Pro	Glu	Val	Gln	Phe	Asn	Trp	Tyr	Val
				260					265					270		
	Asp	Gly	Val 275	Glu	Val	His	Asn	Ala 280	Lys	Thr	Lys	Pro	Arg 285	Glu	Glu	Gln
	Phe	Ala	Ser	Thr	Phe	Arg	Val	Val	Ser	Val	Leu	Thr	Val	Val	His	Gln
30		290					295					300				
		Trp	Leu	Asn	Gly		Glu	Tyr	Lys	Cys		Val	Ser	Asn	Lys	Gly
	305	Dro	7.1.	Dro	т10	310	T 170	mbγ	T10	502	315	Πh∽	T 170	C1.,,	Cln	320 Bro
	цец	PIO	Ala	PIO	325	GIU	цуѕ	TIIT	TIE	330	пуѕ	TILL	пуѕ	СТУ	335	PIO
35	Arq	Glu	Pro	Gln		Cvs	Thr	Leu	Pro		Ser	Ara	Glu	Glu		Thr
	_			340		_			345					350		
	Lys	Asn	Gln	Val	Ser	Leu	Trp	Cys	Leu	Val	Lys	Gly	Phe	Tyr	Pro	Ser
			355					360					365			
	Asp	Ile	Ala	Val	Glu	Trp	Glu	Ser	Asn	Gly	Gln	Pro	Glu	Asn	Asn	Tyr
40		370					375					380				
		Thr	Thr	Pro	Pro		Leu	Asp	Ser	Asp		Ser	Phe	Phe	Leu	
	385	T	Т о 11	mb so	7707	390	T	C 0 30	7	П 2020	395	Cln	C1	7 ~ ~	7701	400
	ser	цγѕ	Leu	T111,	vai 405	чгр	цуS	ser	ALG	410	GTII	GTII	σтλ	ASII	vai 415	rne
45	Ser	Cvs	Ser	Val		His	Glıı	Ala	Len		Asn	His	Tvr	Thr		Lvs
		-10		420		0			425	0		0	- 1 -	430		-10
	Ser	Leu	Ser	Leu	Ser	Pro	His	His		His	His	His	His	His		
			435					440					445			

```
<210> 41
     <211> 447
     <212> PRT
     <213> Искусственная
     <220>
5
     <223> искусственно синтезированная последовательность
     Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly
                                         10
     Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser
10
                                     25
     Asn Arg Asn Thr Tyr Leu His Trp Tyr Gln Gln Lys Pro Gly Gln Ala
                                 40
     Pro Arg Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro
15
                             55
     Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
                         70
                                             75
     Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Asn
                     85
                                         90
     Thr His Val Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys
20
                 100
                                     105
     Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys
                                 120
     Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys
         130
                             135
                                                 140
25
     Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu
                         150
                                             155
     Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu
                     165
                                         170
                                                             175
     Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr
30
                                     185
     Lys Thr Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val
                                 200
                                                     205
     Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro Pro Cys Pro Pro Cys Pro
35
                             215
     Ala Pro Glu Ala Ala Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
     225
                         230
                                             235
     Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
                                         250
     Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr
40
                 260
                                     265
     Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu
                                 280
     Gln Phe Ala Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His
                             295
                                                 300
45
     Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
                         310
                                             315
     Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln
```

					325					330					335	
	Pro	Ara	Glu	Pro		Val	Cvs	Thr	Leu		Pro	Ser	Gln	Glu		Met.
		9		340			-1-		345					350		
	Thr	Lvs	Asn		Val	Ser	Leu	Trp	_	Leu	Val	Lvs	Glv		Tvr	Pro
5		-1-	355					360	- 1 -			-1-	365		-1-	
	Ser	Asp	Ile	Ala	Val	Glu	Trp		Ser	Asn	Glv	Gln		Glu	Asn	Asn
		370					375				1	380				
	Tvr		Thr	Thr	Pro	Pro		Leu	Asp	Ser	Asp		Ser	Phe	Phe	Leu
	385	1 -				390			- 1		395	- 1				400
10		Ser	Arg	Leu	Thr		Asp	Lvs	Ser	Ara		Gln	Glu	Glv	Asn	
	1		ر		405		- 1	7		410	1			- 1	415	
	Phe	Ser	Cys	Ser		Met	His	G] 11	Ala		His	Asn	His	Tvr		Gln
	2110	201	010	420		1100		014	425	200				430		0_11
	Lvs	Ser	Leu		Len	Ser	Len	His		His	His	His	His		His	
15	_10	201	435	201	200	201	200	440					445			
10	<210)> 4	42													
	<21		449													
	<212		PRT													
	<213	_	Искус	CCTB	енная	Ŧ										
20	<220		Ū													
	<223	3> 1	искус	CCTB	енно	СИНТ	гезир	оован	ная	посј	тедон	затеј	тьнос	СТЬ		
	<400		42													
	Gln	Val	Gln	Leu	Lys	Glu	Ala	Gly	Pro	Gly	Leu	Val	Gln	Pro	Thr	Gln
	1				5					10					15	
25	Thr	Leu	Ser	Leu	Thr	Cys	Thr	Val	Ser	Gly	Phe	Ser	Leu	Thr	Ser	Asp
				20					25					30		
	Gly	Val	His	Trp	Ile	Arg	Gln	Pro	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Met
			35					40					45			
	Gly	Ile	Ile	Tyr	Tyr	Asp	Gly	Gly	Thr	Asp	Tyr	Asn	Ser	Ala	Ile	Lys
30		50					55					60				
	Ser	Arg	Leu	Ser	Ile	Ser	Arg	Asp	Thr	Ser	Lys	Ser	Gln	Val	Phe	Leu
	65					70					75					80
	Lys	Ile	Asn	Ser	Leu	Gln	Thr	Asp	Asp	Thr	Ala	Met	Tyr	Tyr	Cys	Ala
					85					90					95	
35	Arg	Ile	His	Phe	Asp	Tyr	Trp	Gly		Gly	Val	Met	Val	Thr	Val	Ser
				100					105					110		
	Ser	Ala	Ser	Thr	Lys	Gly	Pro		Val	Phe	Pro	Leu		Pro	Ser	Ser
			115					120					125			
	Lys		Thr	Ser	Gly	Gly		Ala	Ala	Leu	Gly	Cys	Leu	Val	Lys	Asp
40		130					135					140				
		Phe	Pro	Glu	Pro		Thr	Val	Ser	Trp		Ser	Gly	Ala	Leu	
	145					150					155					160
	Ser	Gly	Val	His		Phe	Pro	Ala	Val		Gln	Ser	Ser	Gly		Tyr
	_	_	_	_	165				_	170	_	_			175	
45	Ser	Leu	Ser		Val	Val	Thr	Val		Ser	Ser	Ser	Leu		Thr	GIn
		_		180	_		_		185	_	~	_		190		_
	'I'hr	'I'yr	Ile	Cys	Asn	Val	Asn		Lys	Pro	Ser	Asn		Lys	Val	Asp
			195					200					205			

```
Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro
         210
                             215
                                                  220
     Cys Pro Ala Pro Glu Ala Ala Gly Gly Pro Ser Val Phe Leu Phe Pro
                         230
                                              235
     Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr
5
                     245
                                         250
     Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn
                                      265
     Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg
                                 280
                                                      285
10
     Glu Glu Gln Tyr Ala Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val
                             295
     Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser
                         310
     305
                                              315
15
     Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys
                     325
                                         330
     Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Cys
                                     345
                 340
     Glu Leu Thr Lys Asn Gln Val Ser Leu Ser Cys Ala Val Lys Gly Phe
20
                                 360
     Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu
                             375
                                                  380
     Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe
                         390
                                              395
     Phe Leu Val Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly
25
                     405
                                         410
     Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr
                 420
                                     425
     Thr Gln Lys Ser Leu Ser Leu Ser Pro Asp Tyr Lys Asp Asp Asp Asp
             435
                                 440
                                                      445
30
     Lys
     <210> 43
     <211> 445
     <212> PRT
35
     <213> Искусственная
     <223> искусственно синтезированная последовательность
     Gln Val Gln Leu Lys Glu Ala Gly Pro Gly Leu Val Gln Pro Thr Gln
                     5
                                          10
40
     Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Thr Ser Asp
                                      25
     Gly Val His Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Met
                                 40
     Gly Ile Ile Tyr Tyr Asp Gly Gly Thr Asp Tyr Asn Ser Ala Ile Lys
45
                             55
                                                  60
     Ser Arg Leu Ser Ile Ser Arg Asp Thr Ser Lys Ser Gln Val Phe Leu
                                              75
      65
                          70
                                                                  80
```

	Lys	Ile	Asn	Ser	Leu 85	Gln	Thr	Asp	Asp	Thr	Ala	Met	Tyr	Tyr	Cys 95	Ala
	Arg	Ile	His	Phe 100	Asp	Tyr	Trp	Gly	Gln 105	Gly	Val	Met	Val	Thr 110	Val	Ser
5	Ser	Ala	Ser 115	Thr	Lys	Gly	Pro	Ser 120	Val	Phe	Pro	Leu	Ala 125	Pro	Ser	Ser
	Lys	Ser 130	Thr	Ser	Gly	Gly	Thr 135	Ala	Ala	Leu	Gly	Cys 140	Leu	Val	Lys	Asp
10	Tyr 145	Phe	Pro	Glu	Pro	Val 150	Thr	Val	Ser	Trp	Asn 155	Ser	Gly	Ala	Leu	Thr 160
	Ser	Gly	Val	His	Thr 165	Phe	Pro	Ala	Val	Leu 170	Gln	Ser	Ser	Gly	Leu 175	Tyr
	Ser	Leu	Ser	Ser 180	Val	Val	Thr	Val	Pro 185	Ser	Ser	Asn	Phe	Gly 190	Thr	Gln
15		_	Thr 195				_	200	_				205			_
		210	Val				215					220				
20	Pro 225	Pro	Ala	Ala	Ala	Pro 230	Ser	Val	Phe	Leu	Phe 235	Pro	Pro	Lys	Pro	Lys 240
	Asp	Thr	Leu	Met	Ile 245	Ser	Arg	Thr	Pro	Glu 250	Val	Thr	Cys	Val	Val 255	Val
	Asp	Val	Ser	His 260	Glu	Asp	Pro	Glu	Val 265	Gln	Phe	Asn	Trp	Tyr 270	Val	Asp
25			Glu 275					280		_		_	285			
		290	Thr		_		295					300				-
30	Trp 305	Leu	Asn	Gly	Lys	Glu 310	Tyr	Lys	Cys	Lys	Val 315	Ser	Asn	Lys	Gly	Leu 320
	Pro	Ala	Pro	Ile	Glu 325	Lys	Thr	Ile	Ser	Lys 330	Thr	Lys	Gly	Gln	Pro 335	Arg
	Glu	Pro	Gln	Val	Tyr	Thr	Leu	Pro	Pro 345	Ser	Arg	Cys	Glu	Met 350	Thr	Lys
35	Asn	Gln	Val		Leu	Ser	Cys	Ala 360		Lys	Gly	Phe	Tyr 365		Ser	Asp
	Ile	Ala 370	Val	Glu	Trp	Glu	Ser 375	Asn	Gly	Gln	Pro	Glu 380	Asn	Asn	Tyr	Lys
		Thr	Pro	Pro	Met		Asp	Ser	Asp	Gly		Phe	Phe	Leu	Val	
40	385	T 011	Πhr	Val	7 cn	390	Sor	λκα	Trn	Cln	395	C1 11	7 an	Val	Dho	400
	гуз	ьеи	Thr	Val	405	гуѕ	ser	Arg	тъ	410	GIII	GIY	ASII	Val	415	ser
	Cys	Ser	Val	Met 420	His	Glu	Ala	Leu	His 425	Asn	His	Tyr	Thr	Gln 430	Lys	Ser
45	Leu	Ser	Leu		Pro	Asp	Tyr	Lys		Asp	Asp	Asp	Lys	- 3 0		
			435					440					445			
	<210)> 4	44													
	<21	1> 4	446													

	<212>	PRT													
	<213>	Иску	ССТВ	енная	Ŧ										
	<220>														
	<223>	иску	CCTB	енно	СИНТ	гезир	оован	ная	посл	педов	ватеј	тьнос	СТЬ		
5	<400>														
		al Gln	Leu	_	Glu	Ala	Gly	Pro	_	Leu	Val	Gln	Pro		Gln
	1 Thr I	eu Ser	T 011	5 Thr	Circ	Πbγ	77 a l	Sor	10	Dho	Sor	T 011	Πbγ	15 Sor	7 cn
	1111 10	eu sei	20	TIIL	Суз	TIIL	vai	25	GIY	rne	ser	цец	30	ser	Asp
10	Gly V	al His		Ile	Arg	Gln	Pro	-	Gly	Lys	Gly	Leu		Trp	Met
	-	35	-		_		40		_	_	_	45		-	
	Gly I	le Ile	Tyr	Tyr	Asp	Gly	Gly	Thr	Asp	Tyr	Asn	Ser	Ala	Ile	Lys
	5	0				55					60				
		rg Leu	Ser	Ile		Arg	Asp	Thr	Ser	_	Ser	Gln	Val	Phe	
15	65		a	-	70	m1	-	-	m1	75	3.6			~	80
	Lys I	le Asn	Ser	Leu 85	GIn	Thr	Asp	Asp	Thr 90	Ala	Met	Tyr	Tyr	Cys 95	Ala
	Ara T	le His	Phe		Tvr	Trp	Glv	Gln		Val	Met	Val	Thr		Ser
	1119 1	10 1110	100	1100	- 1 -		O ± y	105	CTY	vai	1100	vai	110	vai	DCI
20	Ser A	la Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe	Pro	Leu	Ala	Pro	Cys	Ser
		115					120					125			
	Arg S	er Thr	Ser	Glu	Ser	Thr	Ala	Ala	Leu	Gly	Cys	Leu	Val	Lys	Asp
		30				135					140				
		he Pro	Glu	Pro		Thr	Val	Ser	Trp		Ser	Gly	Ala	Leu	
25	145	ly Val	піс	Πрν	150	Dro	717	Val	T 011	155	Sor	Sor	C1 17	T 011	160
	ser G	ıy vaı	1112	165	rne	FLO	Ата	vaı	170	GIII	SET	SET	СТУ	175	тут
	Ser L	eu Ser	Ser		Val	Thr	Val	Pro		Ser	Ser	Leu	Gly		Lys
			180					185					190		
30	Thr T	yr Thr	Cys	Asn	Val	Asp	His	Lys	Pro	Ser	Asn	Thr	Lys	Val	Asp
		195					200					205			
	=	rg Val	Glu	Ser	Lys	_	Gly	Pro	Pro	Cys		Pro	Cys	Pro	Ala
		10 lu Ala	7\] -	C1 11	C1 17	215 Pro	Sor	Val	Pho	T 011	220 Pho	Dro	Dro	Tue	Pro
35	225	iu Aia	AIA	GIY	230	FLO	SET	vaı	rne	235	rne	FLO	FLO	пуз	240
		sp Thr	Leu	Met		Ser	Arg	Thr	Pro		Val	Thr	Cys	Val	
	-	-		245			_		250				-	255	
	Val A	sp Val	Ser	Gln	Glu	Asp	Pro	Glu	Val	Gln	Phe	Asn	Trp	Tyr	Val
			260					265					270		
40	Asp G	ly Val	Glu	Val	His	Asn		Lys	Thr	Lys	Pro		Glu	Glu	Gln
	T) 1 7	275	ml	m	7	77-7	280	0	T7 - 7	T	m1	285	T	TT -	01
		la Ser 90	Thr	Tyr	Arg	295	val	ser	vaı	Leu	300	val	Leu	HIS	GIN
		rp Leu	Asn	Glv	Lvs		Tvr	Lvs	Cvs	Lvs		Ser	Asn	Lvs	Glv
45	305	₋	-1011	1	310		- 1 -	-10	- 1 -	315				_10	320
	Leu P	ro Ser	Ser	Ile	Glu	Lys	Thr	Ile	Ser	Lys	Ala	Lys	Gly	Gln	Pro
				325					330					335	
	Arg G	lu Pro	Gln	Val	Tyr	Thr	Leu	Pro	Pro	Ser	Gln	Cys	Glu	Met	Thr

		340	34	5	350
	Lys Asn Glr				Phe Tyr Pro Ser
5				n Gly Gln Pro	Glu Asn Asn Tyr
J					Phe Phe Leu Val
					Gly Asn Val Phe 415
10	Ser Cys Ser	Val Met I 420	His Glu Ala Le 42		Tyr Thr Gln Lys 430
	Ser Leu Ser 435		Leu Asp Tyr Ly 440	s Asp Asp Asp	Asp Lys
	<210> 45				
15	<211> 222				
	<212> PRT				
	<213> Иску	исственная			
	<220>				
	<223> иску	сственно о	синтезированна	я последовате	ІЬНОСТЬ
20	<400> 45				
	Gln Val Glr		Gln Ser Gly Al	a Glu Val Lys	Lys Pro Gly Ala
	1	5		10	15
	Ser Val Lys	Val Ser (20	Cys Lys Ala Se 25		Phe Thr Asp Tyr 30
25	Glu Met His	Trp Ile A	Arg Gln Pro Pr 40	o Gly Gln Gly	Leu Glu Trp Ile 45
	50		55	60	Ser Gln Lys Phe
30	Lys Gly Aro		Leu Thr Ala As 70	p Lys Ser Thr 75	Ser Thr Ala Tyr 80
	Met Glu Lei	Ser Ser 1 85	Leu Thr Ser Gl	u Asp Thr Ala 90	Val Tyr Tyr Cys 95
	Thr Arg Phe	Tyr Ser	Tyr Thr Tyr Tr	p Gly Gln Gly	Thr Leu Val Thr
		100	10	5	110
35	Val Ser Ser 115		Val Ala Ala Pr 120	o Ser Val Phe	Ile Phe Pro Pro 125
	Ser Asp Glu 130	ı Gln Leu 1	Lys Ser Gly Th 135	r Ala Ser Val 140	Val Cys Leu Leu
	Asn Asn Phe	e Tyr Pro A	Arg Glu Ala Ly	s Val Gln Trp	Lys Val Asp Asn
40	145	- -	150	155	160
	Ala Leu Glr	Ser Gly A	Asn Ser Gln Gl	u Ser Val Thr 170	Glu Gln Asp Ser 175
	Lys Asp Ser	Thr Tyr S	Ser Leu Ser Se 18		Leu Ser Lys Ala 190
45	Asp Tyr Glu		Lys Val Tyr Al 200	a Cys Glu Val	Thr His Gln Gly 205
	Leu Ser Ser 210	Pro Val	Thr Lys Ser Ph 215	e Asn Arg Gly 220	Glu Cys

```
<210> 46
     <211> 213
     <212> PRT
     <213> Искусственная
     <220>
5
     <223> искусственно синтезированная последовательность
     Asp Ile Val Leu Thr Gln Ser Pro Thr Thr Ile Ala Ala Ser Pro Gly
                                         10
     Glu Lys Val Thr Ile Thr Cys Arg Ala Ser Ser Val Ser Tyr Met
10
                                      25
     Tyr Trp Tyr Gln Gln Lys Ser Gly Ala Ser Pro Lys Leu Trp Ile Tyr
                                 40
     Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Asn Arg Phe Ser Gly Ser
15
                             55
     Gly Ser Gly Thr Ser Tyr Ser Leu Ala Ile Asn Thr Met Glu Thr Glu
                         70
                                             75
     Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Thr Pro Leu Thr
                     85
                                         90
     Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys Arg Thr Val Ala Ala Pro
20
                 100
                                     105
     Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr
                                 120
     Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys
         130
                             135
                                                 140
25
     Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu
                         150
                                             155
     Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser
                     165
                                         170
     Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala
30
                                     185
     Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe
                                 200
             195
                                                      205
     Asn Arg Gly Glu Cys
35
         210
     <210> 47
     <211> 441
     <212> PRT
     <213> Искусственная
     <220>
40
     <223> искусственно синтезированная последовательность
     Gln Val Gln Leu Lys Glu Ala Gly Pro Gly Leu Val Gln Pro Thr Gln
                                         10
     Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Thr Ser Asp
45
                 20
                                      25
                                                          30
     Gly Val His Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Met
             35
                                  40
                                                      45
```

	Gly	Ile 50	Ile	Tyr	Tyr	Asp	Gly 55	Gly	Thr	Asp	Tyr	Asn 60	Ser	Ala	Ile	Lys
	Ser 65	Arg	Leu	Ser	Ile	Ser 70	Arg	Asp	Thr	Ser	Lys 75	Ser	Gln	Val	Phe	Leu 80
5	Lys	Ile	Asn	Ser	Leu 85	Gln	Thr	Asp	Asp	Thr 90	Ala	Met	Tyr	Tyr	Cys 95	Ala
	Arg	Ile	His	Phe 100	Asp	Tyr	Trp	Gly	Gln 105	Gly	Val	Met	Val	Thr 110	Val	Ser
10	Ser	Ala	Ser 115	Thr	Lys	Gly	Pro	Ser 120	Val	Phe	Pro	Leu	Ala 125	Pro	Ser	Ser
	_	130	Thr			_	135				_	140			_	_
	Tyr 145	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser	Trp	Asn 155	Ser	Gly	Ala	Leu	Thr 160
15		Glv	Val	His	Thr		Pro	Ala	Val	Leu		Ser	Ser	Glv	Leu	
					165					170				_	175	-
	Ser	Leu	Ser	Ser	Val	Val	Thr	Val	Pro	Ser	Ser	Ser	Leu	Gly	Thr	Gln
				180		_			185					190	_	
20	Thr	Tyr	Ile 195	Cys	Asn	Val	Asn	H1s	Lys	Pro	Ser	Asn	Thr 205	Lys	Val	Asp
20	Lys	Lys	Val	Glu	Pro	Lys	Ser		Asp	Lys	Thr	His		Cys	Pro	Pro
	_	210				_	215	_	-	_		220		_		
	Cys	Pro	Ala	Pro	Glu	Ala	Ala	Gly	Gly	Pro	Ser	Val	Phe	Leu	Phe	Pro
	225	_		_	_	230	_				235	_,	_			240
25	Pro	Lys	Pro	Lys	Asp 245	Thr	Leu	Met	Ile	Ser 250	Arg	Thr	Pro	Glu	Val 255	Thr
	Cys	Val	Val	Val 260	Asp	Val	Ser	His	Glu 265	Asp	Pro	Glu	Val	Lys 270	Phe	Asn
	Trp	Tvr	Val		Glv	Val	Glu	Val		Asn	Ala	Lvs	Thr		Pro	Ara
30	_	7	275	-1	- 1			280				1 -	285	1 -		ر
	Glu	Glu 290	Gln	Tyr	Ala	Ser	Thr 295	Tyr	Arg	Val	Val	Ser 300	Val	Leu	Thr	Val
	Leu	His	Gln	Asp	Trp	Leu	Asn	Gly	Lys	Glu	Tyr	Lys	Cys	Lys	Val	Ser
	305					310					315					320
35	Asn	Lys	Ala	Leu	Pro 325	Ala	Pro	Ile	Glu	Lys 330	Thr	Ile	Ser	Lys	Ala 335	Lys
	Gly	Gln	Pro	Arg 340	Glu	Pro	Gln	Val	Tyr 345	Thr	Leu	Pro	Pro	Ser 350	Arg	Cys
	Glu	Leu	Thr	Lys	Asn	Gln	Val		Leu	Ser	Cys	Ala		Lys	Gly	Phe
40		_	355	-	- 1	7. 7		360		G 1	a	-	365	0 1	<u>.</u>	0 1
	Tyr	370	Ser	Asp	lle	Ala	375	GIU	Trp	GIU	Ser	380	GIŸ	GIN	Pro	Glu
	Asn		Tyr	Lys	Thr	Thr		Pro	Val	Leu	Asp		Asp	Gly	Ser	Phe
	385		-	-		390					395		-	-		400
45	Phe	Leu	Val	Ser	Lys	Leu	Thr	Val	Asp	Lys	Ser	Arg	Trp	Gln	Gln	Gly
			_		405					410	_				415	
	Asn	Val	Phe	Ser 420	Cys	Ser	Val	Met	His 425	Glu	Ala	Leu	His	Asn 430	His	Tyr

```
Thr Gln Lys Ser Leu Ser Leu Ser Pro
             435
                                 440
     <210> 48
     <211> 450
     <212> PRT
5
     <213> Искусственная
     <220>
     <223> искусственно синтезированная последовательность
     <400> 48
     Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly
10
                                         10
     Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser
                                     25
                 20
     Asn Arg Asn Thr Tyr Leu His Trp Tyr Gln Gln Lys Pro Gly Gln Ala
15
                                 40
     Pro Arg Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro
         50
                             55
                                                 60
     Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
                         70
                                             75
     Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Asn
20
                     85
                                         90
     Thr His Val Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys
                                    105
     Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser
            115
                                 120
25
                                                     125
     Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys
                            135
                                                 140
     Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu
                         150
                                             155
     Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu
30
                     165
                                         170
     Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr
                 180
                                    185
     Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val
35
             195
                                 200
     Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro
         210
                             215
                                                 220
     Pro Cys Pro Ala Pro Glu Ala Ala Gly Gly Pro Ser Val Phe Leu Phe
                         230
                                             235
     Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val
40
                                         250
                     245
     Thr Cys Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe
                                     265
     Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro
                                 280
                                                     285
45
     Arg Glu Glu Gln Tyr Ala Ser Thr Tyr Arg Val Val Ser Val Leu Thr
                            295
     Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val
```

	305				310					315					320
	Ser As	n Lys	Ala	Leu	Pro	Ala	Pro	Ile	Glu	Lys	Thr	Ile	Ser	Lys	Ala
				325					330					335	
	Lys Gl	y Gln	Pro	Arg	Glu	Pro	Gln	Val	Cys	Thr	Leu	Pro	Pro	Ser	Arg
5			340					345					350		
	Asp Gl	u Leu	Thr	Lys	Asn	Gln	Val	Ser	Leu	Trp	Cys	Leu	Val	Lys	Gly
		355					360					365			
	Phe Ty	r Pro	Ser	Asp	Ile	Ala	Val	Glu	Trp	Glu	Ser	Asn	Gly	Gln	Pro
	37	0				375					380				
10	Glu As	n Asn	Tyr	Lys	Thr	Thr	Pro	Pro	Val	Leu	Asp	Ser	Asp	Gly	Ser
	385				390					395					400
	Phe Ph	e Leu	Tyr	Ser	Lys	Leu	Thr	Val	Asp	Lys	Ser	Arg	Trp	Gln	Gln
				405					410					415	
	Gly As	n Val		Ser	Cys	Ser	Val		His	Glu	Ala	Leu	His	Asn	Arg
15			420					425					430		
	Tyr Th		Lys	Ser	Leu	Ser		Ser	Pro	His	His		His	His	His
		435					440					445			
	His Hi														
	45														
20	<210>	49													
	<211>	116													
	<212> <213>	PRT	CORD		-										
	<220>	Иску	CCTB	енна)	ч										
	\220/														
25	<223>	NCKV	ССТВ	онне	СИН	гезиг	оовая	ная	посл	телог	зател	пънос	ЭТЪ		
25	<223> <400>	иску 49	CCTB	енно	СИН	гезир	рован	ная	посл	тедог	ватеј	пьно	СТЬ		
25	<400>	49				-								Gly	Lys
25		49				-								Gly 15	Lys
25	<400> Glu Va	49 l Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	15	
<i>25 30</i>	<400> Glu Va 1	49 l Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	15	
	<400> Glu Va 1	49 l Gln u Lys	Leu Leu 20	Val 5 Ser	Glu Cys	Ser	Gly	Gly Ser 25	Gly 10 Gly	Leu Phe	Val Thr	Gln Phe	Pro Ser 30	15 Gly	Tyr
	<400> Glu Va 1 Ser Le	49 l Gln u Lys	Leu Leu 20	Val 5 Ser	Glu Cys	Ser	Gly	Gly Ser 25	Gly 10 Gly	Leu Phe	Val Thr	Gln Phe	Pro Ser 30	15 Gly	Tyr
	<400> Glu Va 1 Ser Le	49 l Gln u Lys t His 35	Leu Leu 20 Trp	Val 5 Ser Val	Glu Cys Arg	Ser Glu Gln	Gly Ala Ala 40	Gly Ser 25 Pro	Gly 10 Gly	Leu Phe Arg	Val Thr Gly	Gln Phe Leu 45	Pro Ser 30 Glu	15 Gly Ser	Tyr Val
	<400> Glu Va 1 Ser Le	49 l Gln u Lys t His 35	Leu Leu 20 Trp	Val 5 Ser Val	Glu Cys Arg	Ser Glu Gln	Gly Ala Ala 40	Gly Ser 25 Pro	Gly 10 Gly	Leu Phe Arg	Val Thr Gly	Gln Phe Leu 45	Pro Ser 30 Glu	15 Gly Ser	Tyr Val
	<400> Glu Va 1 Ser Le Gly Me Ala Ty	49 l Gln u Lys t His 35 r Ile	Leu Leu 20 Trp	Val 5 Ser Val Ser	Glu Cys Arg Ser	Ser Glu Gln Ser 55	Gly Ala Ala 40 Ile	Gly Ser 25 Pro	Gly 10 Gly Gly	Leu Phe Arg Lys	Val Thr Gly Tyr 60	Gln Phe Leu 45 Ala	Pro Ser 30 Glu Asp	15 Gly Ser Ala	Tyr Val Val
30	<400> Glu Va 1 Ser Le Gly Me Ala Ty 50	49 l Gln u Lys t His 35 r Ile	Leu Leu 20 Trp	Val 5 Ser Val Ser	Glu Cys Arg Ser	Ser Glu Gln Ser 55	Gly Ala Ala 40 Ile	Gly Ser 25 Pro	Gly 10 Gly Gly	Leu Phe Arg Lys	Val Thr Gly Tyr 60	Gln Phe Leu 45 Ala	Pro Ser 30 Glu Asp	15 Gly Ser Ala	Tyr Val Val
30	<400> Glu Va 1 Ser Le Gly Me Ala Ty 50 Lys Gl	49 l Gln u Lys t His 35 r Ile	Leu Leu 20 Trp Thr	Val 5 Ser Val Ser Thr	Glu Cys Arg Ser Val	Ser Glu Gln Ser 55 Ser	Gly Ala Ala 40 Ile Arg	Gly Ser 25 Pro Asn Asp	Gly 10 Gly Gly Ile	Leu Phe Arg Lys Ala 75	Val Thr Gly Tyr 60 Lys	Gln Phe Leu 45 Ala Asn	Pro Ser 30 Glu Asp	15 Gly Ser Ala Leu	Tyr Val Val Phe
30	<400> Glu Va 1 Ser Le Gly Me Ala Ty 50 Lys Gl 65	49 l Gln u Lys t His 35 r Ile	Leu Leu 20 Trp Thr	Val 5 Ser Val Ser	Glu Cys Arg Ser Val	Ser Glu Gln Ser 55 Ser	Gly Ala Ala 40 Ile Arg	Gly Ser 25 Pro Asn Asp	Gly 10 Gly Gly Ile	Leu Phe Arg Lys Ala 75	Val Thr Gly Tyr 60 Lys	Gln Phe Leu 45 Ala Asn	Pro Ser 30 Glu Asp	15 Gly Ser Ala Leu	Tyr Val Val Phe
30	<400> Glu Va 1 Ser Le Gly Me Ala Ty 50 Lys Gl 65	49 l Gln u Lys t His 35 r Ile y Arg	Leu 20 Trp Thr Phe Asn	Val 5 Ser Val Ser Thr	Glu Cys Arg Ser Val 70 Leu	Ser Glu Gln Ser 55 Ser	Gly Ala Ala 40 Ile Arg Ser	Gly Ser 25 Pro Asn Asp Glu Tyr	Gly 10 Gly Gly Ile Asn Asp 90	Leu Phe Arg Lys Ala 75 Thr	Val Thr Gly Tyr 60 Lys Ala	Gln Phe Leu 45 Ala Asn Met	Pro Ser 30 Glu Asp Leu Tyr Thr	15 Gly Ser Ala Leu Tyr 95	Tyr Val Val Phe 80 Cys
30	<400> Glu Va 1 Ser Le Gly Me Ala Ty 50 Lys Gl 65 Leu Gl Ala Ar	49 l Gln u Lys t His 35 r Ile y Arg n Met	Leu 20 Trp Thr Phe Asn Asp 100	Val 5 Ser Val Ser Thr	Glu Cys Arg Ser Val 70 Leu	Ser Glu Gln Ser 55 Ser	Gly Ala Ala 40 Ile Arg Ser	Gly Ser 25 Pro Asn Asp Glu	Gly 10 Gly Gly Ile Asn Asp 90	Leu Phe Arg Lys Ala 75 Thr	Val Thr Gly Tyr 60 Lys Ala	Gln Phe Leu 45 Ala Asn Met	Pro Ser 30 Glu Asp Leu Tyr	15 Gly Ser Ala Leu Tyr 95	Tyr Val Val Phe 80 Cys
<i>30 35</i>	<400> Glu Va 1 Ser Le Gly Me Ala Ty 50 Lys Gl 65 Leu Gl	49 l Gln u Lys t His 35 r Ile y Arg n Met g Phe l Ser	Leu 20 Trp Thr Phe Asn Asp 100	Val 5 Ser Val Ser Thr	Glu Cys Arg Ser Val 70 Leu	Ser Glu Gln Ser 55 Ser	Gly Ala Ala 40 Ile Arg Ser	Gly Ser 25 Pro Asn Asp Glu Tyr	Gly 10 Gly Gly Ile Asn Asp 90	Leu Phe Arg Lys Ala 75 Thr	Val Thr Gly Tyr 60 Lys Ala	Gln Phe Leu 45 Ala Asn Met	Pro Ser 30 Glu Asp Leu Tyr Thr	15 Gly Ser Ala Leu Tyr 95	Tyr Val Val Phe 80 Cys
<i>30 35</i>	<400> Glu Va 1 Ser Le Gly Me Ala Ty 50 Lys Gl 65 Leu Gl Ala Ar Thr Va	49 l Gln u Lys t His 35 r Ile y Arg n Met g Phe l Ser 115	Leu 20 Trp Thr Phe Asn Asp 100	Val 5 Ser Val Ser Thr	Glu Cys Arg Ser Val 70 Leu	Ser Glu Gln Ser 55 Ser	Gly Ala Ala 40 Ile Arg Ser	Gly Ser 25 Pro Asn Asp Glu Tyr	Gly 10 Gly Gly Ile Asn Asp 90	Leu Phe Arg Lys Ala 75 Thr	Val Thr Gly Tyr 60 Lys Ala	Gln Phe Leu 45 Ala Asn Met	Pro Ser 30 Glu Asp Leu Tyr Thr	15 Gly Ser Ala Leu Tyr 95	Tyr Val Val Phe 80 Cys
<i>30 35</i>	<400> Glu Va 1 Ser Le Gly Me Ala Ty 50 Lys Gl 65 Leu Gl Ala Ar Thr Va <210>	49 l Gln u Lys t His 35 r Ile y Arg n Met g Phe l Ser 115	Leu 20 Trp Thr Phe Asn Asp 100	Val 5 Ser Val Ser Thr	Glu Cys Arg Ser Val 70 Leu	Ser Glu Gln Ser 55 Ser	Gly Ala Ala 40 Ile Arg Ser	Gly Ser 25 Pro Asn Asp Glu Tyr	Gly 10 Gly Gly Ile Asn Asp 90	Leu Phe Arg Lys Ala 75 Thr	Val Thr Gly Tyr 60 Lys Ala	Gln Phe Leu 45 Ala Asn Met	Pro Ser 30 Glu Asp Leu Tyr Thr	15 Gly Ser Ala Leu Tyr 95	Tyr Val Val Phe 80 Cys
30 35 40	<400> Glu Va 1 Ser Le Gly Me Ala Ty 50 Lys Gl 65 Leu Gl Ala Ar Thr Va <210> <211>	49 l Gln u Lys t His 35 r Ile y Arg n Met g Phe l Ser 115 50 444	Leu 20 Trp Thr Phe Asn Asp 100	Val 5 Ser Val Ser Thr	Glu Cys Arg Ser Val 70 Leu	Ser Glu Gln Ser 55 Ser	Gly Ala Ala 40 Ile Arg Ser	Gly Ser 25 Pro Asn Asp Glu Tyr	Gly 10 Gly Gly Ile Asn Asp 90	Leu Phe Arg Lys Ala 75 Thr	Val Thr Gly Tyr 60 Lys Ala	Gln Phe Leu 45 Ala Asn Met	Pro Ser 30 Glu Asp Leu Tyr Thr	15 Gly Ser Ala Leu Tyr 95	Tyr Val Val Phe 80 Cys
<i>30 35</i>	<400> Glu Va 1 Ser Le Gly Me Ala Ty 50 Lys Gl 65 Leu Gl Ala Ar Thr Va <210> <211> <212>	49 l Gln u Lys t His 35 r Ile y Arg n Met g Phe l Ser 115 50 444 PRT	Leu 20 Trp Thr Phe Asn Asp 100 Ser	Val 5 Ser Val Ser Thr Ile 85 Trp	Glu Cys Arg Ser Val 70 Leu Asp	Ser Glu Gln Ser 55 Ser	Gly Ala Ala 40 Ile Arg Ser	Gly Ser 25 Pro Asn Asp Glu Tyr	Gly 10 Gly Gly Ile Asn Asp 90	Leu Phe Arg Lys Ala 75 Thr	Val Thr Gly Tyr 60 Lys Ala	Gln Phe Leu 45 Ala Asn Met	Pro Ser 30 Glu Asp Leu Tyr Thr	15 Gly Ser Ala Leu Tyr 95	Tyr Val Val Phe 80 Cys
30 35 40	<400> Glu Va 1 Ser Le Gly Me Ala Ty 50 Lys Gl 65 Leu Gl Ala Ar Thr Va <210> <211> <212> <213>	49 l Gln u Lys t His 35 r Ile y Arg n Met g Phe l Ser 115 50 444	Leu 20 Trp Thr Phe Asn Asp 100 Ser	Val 5 Ser Val Ser Thr Ile 85 Trp	Glu Cys Arg Ser Val 70 Leu Asp	Ser Glu Gln Ser 55 Ser	Gly Ala Ala 40 Ile Arg Ser	Gly Ser 25 Pro Asn Asp Glu Tyr	Gly 10 Gly Gly Ile Asn Asp 90	Leu Phe Arg Lys Ala 75 Thr	Val Thr Gly Tyr 60 Lys Ala	Gln Phe Leu 45 Ala Asn Met	Pro Ser 30 Glu Asp Leu Tyr Thr	15 Gly Ser Ala Leu Tyr 95	Tyr Val Val Phe 80 Cys
30 35 40	<400> Glu Va 1 Ser Le Gly Me Ala Ty 50 Lys Gl 65 Leu Gl Ala Ar Thr Va <210> <211> <212>	49 l Gln u Lys t His 35 r Ile y Arg n Met g Phe l Ser 115 50 444 PRT	Leu 20 Trp Thr Phe Asn Asp 100 Ser	Val 5 Ser Val Ser Thr Ile 85 Trp	Glu Cys Arg Ser Val 70 Leu Asp	Ser Glu Gln Ser 55 Ser Lys Lys	Gly Ala Ala 40 Ile Arg Ser Asn	Gly Ser 25 Pro Asn Asp Glu Tyr 105	Gly 10 Gly Ile Asn Asp 90 Trp	Leu Phe Arg Lys Ala 75 Thr	Val Thr Gly Tyr 60 Lys Ala Gln	Gln Phe Leu 45 Ala Asn Met Gly	Pro Ser 30 Glu Asp Leu Tyr Thr 110	15 Gly Ser Ala Leu Tyr 95	Tyr Val Val Phe 80 Cys

	<400)> 5	50													
	Glu	Val	Gln	Leu	Val	Glu	Ser	Gly	Gly	Gly	Leu	Val	Gln	Pro	Gly	Lys
	1				5					10					15	
	Ser	Leu	Lys	Leu	Ser	Cys	Glu	Ala	Ser	Gly	Phe	Thr	Phe	Ser	Gly	Tyr
5				20					25					30		
	Gly	Met	His	Trp	Val	Arg	Gln		Pro	Gly	Arg	Gly		Glu	Ser	Val
			35					40					45		_	
	Ala	_	Ile	Thr	Ser	Ser		Ile	Asn	Ile	Lys	_	Ala	Asp	Ala	Val
10	T 170	50	Arg	Dho	Πh∽	7727	55 Sar	7 ~~	7 an	7 an	7.1.	60	7 an	T 011	T 011	Dho
10	<u>ну</u> з	СТУ	AIG	rne	1111	70	Ser	ALG	Asp	ASII	75	пуз	ASII	цеи	цец	80
		Gln	Met	Asn	Ile		Lvs	Ser	Glu	Asp		Ala	Met.	Tvr	Tvr	
	200	0_11	1100	11011	85	200	_10	201	014	90		1110	1100	-1-	95	0,10
	Ala	Arg	Phe	Asp	Trp	Asp	Lys	Asn	Tyr	Trp	Gly	Gln	Gly	Thr	Met	Val
15				100					105					110		
	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe	Pro	Leu	Ala
			115					120					125			
	Pro		Ser	Lys	Ser	Thr		Gly	Gly	Thr	Ala		Leu	Gly	Cys	Leu
		130					135		_			140				
20		Lys	Asp	Tyr	Phe		Glu	Pro	Val	Thr		Ser	Trp	Asn	Ser	_
	145	T 011	Thr	Cor	C1.,	150	шіс	Πbγ	Dho	Dro	155	77	T 011	Cln	Cor	160
	Ата	цеи	TIIL	ser	165	vai	1115	1111	rne	170	Ата	vai	цеи	GIII	175	per
	Glv	Leu	Tyr	Ser		Ser	Ser	Val	Val		Val	Pro	Ser	Ser		Leu
25	_		_	180					185					190		
	Gly	Thr	Gln	Thr	Tyr	Ile	Cys	Asn	Val	Asn	His	Lys	Pro	Ser	Asn	Thr
			195					200					205			
	Lys		Asp	Lys	Lys	Val	Glu	Pro	Lys	Ser	Cys	Asp	Lys	Thr	His	Thr
		210					215		_			220			_	
30		Pro	Pro	Cys	Pro		Pro	Glu	Ala	Ala		Gly	Pro	Ser	Val	
	225	Dho	Pro	Dro	Twe	230 Pro	T 176	7 cn	Πbγ	T 011	235 Mot	T10	Sor	λκα	Прх	240 Pro
	цец	rne	FIO	FIO	цуs 245	FIO	пуз	АЗР	1111	250	Mec	116	ser	AIG	255	FIO
	Glu	Val	Thr	Cys		Val	Val	Asp	Val		His	Glu	Asp	Pro		Val
35				260				-	265				-	270		
	Lys	Phe	Asn	Trp	Tyr	Val	Asp	Gly	Val	Glu	Val	His	Asn	Ala	Lys	Thr
			275					280					285			
	Lys	Pro	Arg	Glu	Glu	Gln	Tyr	Ala	Ser	Thr	Tyr	_	Val	Val	Ser	Val
		290					295					300				
40		Thr	Val	Leu	His		Asp	Trp	Leu	Asn		Lys	Glu	Tyr	Lys	
	305	7701	C 0 22	7 00	T	310	T 011	Dwo	71 -	Dmo	315	C1	T	mb w	Tlo	320
	гуѕ	Val	Ser	ASII	шуS 325	Ala	ьеи	PIO	АІа	330	тте	GIU	гуѕ	1111	335	ser
	Lvs	Ala	Lys	Glv		Pro	Ara	Glu	Pro		Val	Tvr	Thr	Leu		Pro
45	-10		-1-	340			9	~	345			-1-		350		
	Ser	Arg	Cys	Glu	Leu	Thr	Lys	Asn		Val	Ser	Leu	Ser	Cys	Ala	Val
			355					360					365			
	Lys	Gly	Phe	Tyr	Pro	Ser	Asp	Ile	Ala	Val	Glu	Trp	Glu	Ser	Asn	Gly

		370					375					380				
	Gln		Glu	Asn	Asn	Tvr		Thr	Thr	Pro	Pro		Leu	Asp	Ser	Asp
	385					390	7				395			- 1		400
		Ser	Phe	Phe	Leu		Ser	Lvs	Leu	Thr		Asp	Lvs	Ser	Ara	
5	1				405			-1-		410			-1-		415	
	Gln	Gln	Gly	Asn		Phe	Ser	Cvs	Ser		Met	His	Glu	Ala		His
			- 1	420					425					430		
	Asn	His	Tyr		Gln	Lvs	Ser	Leu		Leu	Ser	Pro				
			435			_		440								
10	<21	0> !	51													
	<21	1> :	214													
	<21	2>]	PRT													
	<21	_	Иску	ССТВ	енная	a .										
	<22															
15	<22		иску	CCTB	ЭННО	СИН	гезик	ован	ная	посл	педон	ватеј	пьно	СТЬ		
	<40		51				-									
				Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Pro	Ala	Ser	Leu	Gly
	1				5					10					15	- 1
		Ara	Val	Thr	Ile	Asn	Cvs	Gln	Ala		Gln	Asp	Ile	Ser		Tyr
20	-	2		20			_		25			_		30		_
	Leu	Asn	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Lys	Ala	Pro	Lys	Leu	Leu	Ile
			35	-			-	40	_	-			45			
	Tyr	Tyr	Thr	Asn	Lys	Leu	Ala	Asp	Gly	Val	Pro	Ser	Arg	Phe	Ser	Gly
	-	50			-		55	-	_			60	_			_
25	Ser	Gly	Ser	Gly	Arg	Asp	Ser	Ser	Phe	Thr	Ile	Ser	Ser	Leu	Glu	Ser
	65					70					75					80
	Glu	Asp	Ile	Gly	Ser	Tyr	Tyr	Cys	Gln	Gln	Tyr	Tyr	Asn	Tyr	Pro	Trp
					85					90					95	
	Thr	Phe	Gly	Pro	Gly	Thr	Lys	Leu	Glu	Ile	Lys	Arg	Thr	Val	Ala	Ala
30				100					105					110		
	Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Ser	Asp	Glu	Gln	Leu	Lys	Ser	Gly
			115					120					125			
	Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	Asn	Asn	Phe	Tyr	Pro	Arg	Glu	Ala
		130					135					140				
35	Lys	Val	Gln	Trp	Lys	Val	Asp	Asn	Ala	Leu	Gln	Ser	Gly	Asn	Ser	Gln
	145					150					155					160
	Glu	Ser	Val	Thr	Glu	Gln	Asp	Ser	Lys	Asp	Ser	Thr	Tyr	Ser	Leu	Ser
					165					170					175	
	Ser	Thr	Leu	Thr	Leu	Ser	Lys	Ala	Asp	Tyr	Glu	Lys	His	Lys	Val	Tyr
40				180					185					190		
	Ala	Cys	Glu	Val	Thr	His	Gln	Gly	Leu	Ser	Ser	Pro	Val	Thr	Lys	Ser
			195					200					205			
	Phe	Asn	Arg	Gly	Glu	Cys										
		210														
45	<21	0>	52													
	<21	1>	115													
	<21	2> :	PRT													
	/21	2 \	A ~ 747 74	~ ~ = = -		-										

<213> Искусственная

```
<220>
     <223> искусственно синтезированная последовательность
     Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
5
                                         10
     Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr
                                     25
     Glu Met His Trp Ile Arg Gln Pro Pro Gly Gln Gly Leu Glu Trp Ile
                                 40
     Gly Ala Ile Asp Pro Lys Thr Gly Asp Thr Ala Tyr Ser Gln Lys Phe
10
     Lys Gly Arg Val Thr Leu Thr Ala Asp Lys Ser Thr Ser Thr Ala Tyr
                         70
                                             75
     Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys
15
                     85
                                         90
     Thr Arg Phe Tyr Ser Tyr Thr Tyr Trp Gly Gln Gly Thr Leu Val Thr
                100
                                     105
                                                         110
     Val Ser Ser
            115
     <210> 53
20
     <211> 443
     <212> PRT
     <213> Искусственная
     <220>
     <223> искусственно синтезированная последовательность
25
     <400> 53
     Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
                                         10
     Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr
                                     25
30
     Glu Met His Trp Ile Arg Gln Pro Pro Gly Gln Gly Leu Glu Trp Ile
                                 40
     Gly Ala Ile Asp Pro Lys Thr Gly Asp Thr Ala Tyr Ser Gln Lys Phe
                             55
                                                  60
35
     Lys Gly Arg Val Thr Leu Thr Ala Asp Lys Ser Thr Ser Thr Ala Tyr
                                             75
                         70
     Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys
                     85
                                         90
     Thr Arg Phe Tyr Ser Tyr Thr Tyr Trp Gly Gln Gly Thr Leu Val Thr
                 100
                                     105
                                                          110
40
     Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro
                                 120
     Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val
                            135
     Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala
45
     145
                         150
                                             155
     Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly
                     165
                                         170
                                                              175
```

```
Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly
                 180
                                    185
     Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys
                                 200
     Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys
5
                             215
                                                 220
     Pro Pro Cys Pro Ala Pro Glu Ala Ala Gly Gly Pro Ser Val Phe Leu
                         230
     225
                                             235
     Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu
                     245
                                         250
10
     Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys
                 260
                                     265
     Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys
                                 280
                                                    285
             275
15
     Pro Arg Glu Glu Gln Tyr Ala Ser Thr Tyr Arg Val Val Ser Val Leu
                             295
                                                 300
     Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys
                         310
                                             315
     Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys
20
                     325
                                         330
     Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser
                 340
                                     345
     Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys
                                 360
                                                     365
     Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln
25
         370
                            375
                                                 380
     Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly
                        390
                                             395
     Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln
                     405
                                         410
30
     Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn
                 420
                                    425
                                                         430
     His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro
             435
                                 440
35
     <210> 54
     <211> 219
     <212> PRT
     <213> Искусственная
     <223> искусственно синтезированная последовательность
40
     <400> 54
     Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly
                                         10
     Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser
                                     25
45
     Asn Arg Asn Thr Tyr Leu His Trp Tyr Gln Gln Lys Pro Gly Gln Ala
                                 40
     Pro Arg Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro
```

		50					55					60					
	Asp	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Lys	Ile	
	65					70					75					80	
	Ser	Arg	Val	Glu	Ala	Glu	Asp	Val	Gly	Val	Tyr	Tyr	Cys	Ser	Gln	Asn	
5					85					90					95		
	Thr	His	Val	Pro	Pro	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Leu	Glu	Ile	Lys	
				100					105					110			
	Arg	Thr	Val	Ala	Ala	Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Ser	Asp	Glu	
			115					120					125				
10	Gln	Leu	Lys	Ser	Gly	Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	Asn	Asn	Phe	
		130					135					140					
	Tyr	Pro	Arg	Glu	Ala	Lys	Val	Gln	Trp	Lys	Val	Asp	Asn	Ala	Leu	Gln	
	145					150					155					160	
	Ser	Gly	Asn	Ser	Gln	Glu	Ser	Val	Thr	Glu	Gln	Asp	Ser	Lys	Asp	Ser	
15					165					170					175		
	Thr	Tyr	Ser	Leu	Ser	Ser	Thr	Leu	Thr	Leu	Ser	Lys	Ala	Asp	Tyr	Glu	
				180					185					190			
	Lys	His	Lys	Val	Tyr	Ala	Cys	Glu	Val	Thr	His	Gln	Gly	Leu	Ser	Ser	
			195					200					205				
20	Pro	Val	Thr	Lys	Ser	Phe	Asn	Arg	Gly	Glu	Cys						
		210					215										
	<210)> !	55														
	<211	1> 2	20														
	<212	2> ,	ДНК														
25	<213	3> 1	Иску	CCTB	енная	Ŧ											
	<220)>															
	<223	3> 1	иску	CCTB	енно	СИН	гезиј	рован	ная	посл	тедог	зател	пьно	СТЬ			
	<400)> !	55														
	cgca	aacg	caa t	ttaat	igtga	ag											20
30	<210)> !	56														
	<211	1> 2	21														
	<212	2> 7	ДНК														
	<213	3> 1	Иску	ССТВ	енная	Ŧ											
	<220)>															
35	<223	3> 1	иску	ССТВ	ЭННО	СИН	гезиј	рован	ная	посј	тедог	вател	пьно	СТЬ			
	<400)> !	56														
	tgag	gttc	cac q	gaca	ccgt	ca c											21
	<210)> !	57														
	<211	1> 1	18														
40	<212	2> 2	ДНК														
	<213	3> 1	Иску	ССТВ	енная	Ŧ											
	<220)>															
	<223	3> 1	иску	ССТВ	енно	СИН	гезиј	рован	ная	посл	тедог	вател	пьно	СТЬ			
	<400)> !	57														
45	gcgt	caca	act 1	ttgct	tatg												18
	<210)> !	58														
	<211	1> 3	328														
	<212	2>]	PRT														

	<213 <22		Иску	CCTB	енная	Ŧ										
	<223 <40		иску 58	CCTB	Энно	СИН	гезиј	рован	ная	посл	педог	вател	пьно	СТЬ		
5	Ala 1	Ser	Thr	Lys	Gly 5	Pro	Ser	Val	Phe	Pro	Leu	Ala	Pro	Ser	Ser 15	Lys
	Ser	Thr	Ser	Gly 20	Gly	Thr	Ala	Ala	Leu 25	Gly	Cys	Leu	Val	Lys 30	Asp	Tyr
10	Phe	Pro	Glu 35	Pro	Val	Thr	Val	Ser 40	Trp	Asn	Ser	Gly	Ala 45	Leu	Thr	Ser
	Gly	Val 50	His	Thr	Phe	Pro	Ala 55	Val	Leu	Gln	Ser	Ser 60	Gly	Leu	Tyr	Ser
	65		Ser			70					75		_			80
15	Tyr	Ile	Cys	Asn	Val 85	Asn	His	Lys	Pro	Ser 90	Asn	Thr	Lys	Val	Asp 95	Lys
	_		Glu	100	_		_	_	105				_	110		
20	Pro	Ala	Pro 115	Glu	Leu	Arg	Gly	Gly 120	Pro	Lys	Val	Phe	Leu 125	Phe	Pro	Pro
	Lys	Pro 130	Lys	Asp	Thr	Leu	Met 135	Ile	Ser	Arg	Thr	Pro 140	Glu	Val	Thr	Cys
	145		Val	_		150			_		155		_			160
25	_		Asp	_	165					170	_		_		175	
			Tyr	180			_	_	185					190		
30			Asp 195	_			_	200					205			
		210					215					220				Gly
	225		Arg			230		_			235				_	240
35			Lys		245					250			_	_	255	
			Asp	260				_	265			_		270		
40		_	Lys 275					280		_		_	285			
		290	Ser				295					300				
	305		Ser			310			Glu	Ala	Leu 315	His	Asn	Arg	Tyr	Thr 320
45			Ser	Leu	Ser 325	Leu	Ser	Pro								
	<210 <210	0> 1>	59 107													

```
<212> PRT
     <213> Homo sapiens
     Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu
                                         10
5
     Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe
                                     25
     Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln
                                 40
     Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser
10
                             55
     Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu
                         70
                                             75
     Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser
15
                     85
                                         90
     Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
                100
                                     105
     <210> 60
     <211> 106
20
     <212> PRT
     <213> Homo sapiens
     <400> 60
     Gly Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser
                                         10
     Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp
25
                 20
                                     25
                                                          30
     Phe Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro
                                 40
     Val Lys Ala Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn
                             55
                                                 60
30
     Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys
                         70
                                             75
     Ser His Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val
                     85
                                         90
35
     Glu Lys Thr Val Ala Pro Thr Glu Cys Ser
                 100
                                      105
     <210> 61
     <211> 120
     <212> PRT
     <213> Искусственная
40
     <220>
     <223> искусственно синтезированная последовательность
     <400> 61
     Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
45
                                         1 0
     Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
                                      25
```

Tyr Thr His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met

		35					40					45			
	Gly Ile		Asn	Pro	Ser	Gly 55		Ser	Thr	Ser	Tyr 60	Ala	Gln	Lys	Phe
5	Gln Gly	y Arg	Val	Thr	Met 70	Thr	Arg	Asp	Thr	Ser 75	Thr	Ser	Thr	Val	Tyr 80
	Met Gli	ı Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
	Ala Aro	g Gly	Ala 100	Pro	Glu	Tyr	Ser	Ser 105	Ser	Ser	Asp	Tyr	Trp 110	Gly	Gln
10	Gly Th	Met 115	Val	Thr	Val	Ser	Ser 120								
	<210>	62													
	<211>	124													
	<212>	PRT													
15	<213>	Иску	ССТВ	енная	Ŧ										
	<220>														
	<223>	иску	CCTB	онне	СИН	гезир	рован	ная	посл	тедон	ватеј	тьнос	СТЬ		
	<400>	62													
20	Glu Vai	l Gln	Leu	Gln 5	Glu	Ser	Gly	Pro	Gly 10	Leu	Val	Lys	Pro	Ser 15	Glu
	Thr Le	ı Ser	Leu 20	Thr	Cys	Thr	Val	Ser 25	Gly	Gly	Ser	Ile	Ser 30	Ser	Ser
	Ser Ty	Tyr 35	Trp	Gly	Trp	Ile	Arg 40	Gln	Pro	Pro	Gly	Lys 45	Gly	Leu	Glu
25	Trp Ile	e Gly	Ser	Ile	His	Tyr 55	Thr	Gly	Ser	Thr	Tyr 60	Tyr	Asn	Pro	Ser
	Leu Lys	s Ser	Arg	Val		Ile	Ser	Val	Asp		Ser	Lys	Asn	Gln	
	65 Ser Le	1 T 17 C	T 011	Sor	70 Sor	77 a l	Πbγ	7.1.5	7.1.5	75	Πbγ	7.1.5	77 a l	П177	80
30	DEL HE	и шуз	пец	85	Del	vai	1111	АТА	90	лэр	1111	АТА	vai	95	тут
	Cys Ala	a Arg	Leu 100	Asn	Pro	Ser	Ile	Ala 105	Ala	Arg	Pro	Gly	Ala 110	Phe	Asp
	Ile Tr	Gly 115	Gln	Gly	Thr	Met	Val	Thr	Val	Ser	Ser				
35	<210>	63													
	<211>	120													
	<212>	PRT													
	<213>	Иску	ССТВ	енная	Ŧ										
	<220>														
40	<223>	иску	CCTB	онне	СИН	гезир	ован	ная	посј	тедон	ватеј	тьнос	СТЬ		
	<400>	63													
	Glu Vai	l Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ala
45	Ser Val	L Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Ser	Tyr
	Tyr Th	His	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
	Gly Ile	e Ile	Asn	Pro	Ser	Gly	Gly	Ser	Thr	Ser	Tyr	Ala	Gln	Lys	Phe

		50					55					60				
	Gln		Arg	Val	Thr	Met		Arg	Asp	Thr	Ser		Ser	Thr	Val	Tyr
	65					70					75					80
	Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
5					85					90					95	
	Ala	Arg	Gly	Ala	Pro	Glu	Tyr	Ser	Ser	Ser	Ser	Asp	Tyr	Trp	Gly	Gln
				100					105					110		
	Gly	Thr	Met	Val	Thr	Val	Ser	Ser								
			115					120								
10	<21		64													
	<21		120													
	<21		PRT													
	<21:		Искус	CCTB	енная	-I										
15	<22		искус	CMP	2000	CIARL	מומ בח) (P 2 I	חכענ	посі	ταποι	2 5 5 6 7	TL UO	~m t		
13	<40		64	CIBC	211110	CVIII	ICOM	роват	шал	11003	тедот	34103	тыпос			
	_		Gln	Leu	Val	Gln	Ser	Glv	Ala	Glu	Val	Lvs	Lvs	Pro	Glv	Ala
	1				5			1		10		-1-	-1-		15	
	Ser	Val	Lys	Val	Ser	Cys	Lys	Ala	Ser	Gly	Tyr	Thr	Phe	Ser	Gly	Tyr
20			_	20		_	_		25	_	_			30	_	_
	Tyr	Met	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Gln	Gly	Leu	Glu	Trp	Met
			35					40					45			
	Gly	Trp	Ile	Asn	Pro	Asn	Ser	Gly	Asp	Thr	Asn	Tyr	Ala	Gln	Asn	Phe
		50					55					60				
25		Gly	Arg	Val	Thr		Thr	Arg	Asp	Thr		Ile	Ser	Thr	Ala	Tyr
	65					70					75					80
	Met	Glu	Leu	Ser		Leu	Arg	Ser	Asp		Thr	Ala	Val	Tyr		Cys
	7.7	-	-	G 1	85	G 1		a	a	90	_	-			95	0 1
20	Ala	Arg	Asp	100	Thr	GTĀ	Tyr	ser		Ser	Pro	Asp	Tyr		GTĀ	GIn
30	C1 57	Πhr	Pro		Пръ	Val	Sor	Sor	105					110		
	GIY	TIIL	115	vai	TIIL	vai	Del	120								
	<21	0>	65					120								
	<21		117													
35	<21	2> :	PRT													
	<21	3> 1	Искус	ССТВ	енная	Ŧ										
	<22	0>														
	<22	3> 1	искус	ССТВ	енно	СИН	гезир	ован	ная	посл	тедог	ватеј	пьно	СТЬ		
	< 40	0>	65													
40	Glu	Val	Gln	Leu		Gln	Ser	Gly	Ala		Val	Lys	Lys	Pro		Ala
	1				5					10					15	
	Ser	Val	Lys		Ser	Cys	Lys	Ala		Gly	Tyr	Thr	Phe		Gly	Tyr
				20		-	G 1	2.7	25	G 1	G 1	G 1	_	30		3.6
15	л, À.L	мет	His 35	Trp	val	Arg	GIN	Ala 40	rro	СΤΆ	GIN	СΤΆ	Leu 45	GLU	Trp	мет
45	G1 ++	Ψνν	35 Ile	Zen	Dro	Zen	Sar		C1 ++	пь∽	Zen	Ψττν	-	Cln	T.170	Pho
	оту	50	TTC	11011	110	11011	55	оту	оту	T11T	11011	60	11±a	ULII	пуз	T 11C
	Gln		Arg	Val	Thr	Me+		Ara	Asn	Thr	Ser		Ser	Thr	Ala	Tvr
	U 111	υ±y	9	· u _		1100		9	1101		~ C _ L		~ C L			- Y -

```
65
                         70
                                             75
                                                                 80
     Met Glu Leu Ser Arg Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
                                         90
     Ala Arg Asp Gly Thr Gly Asp Leu Asp Tyr Trp Gly Gln Gly Thr Leu
                 100
                                     105
5
     Val Thr Val Ser Ser
             115
     <210> 66
     <211> 119
     <212> PRT
10
     <213> Искусственная
     <220>
     <223> искусственно синтезированная последовательность
     <400> 66
15
     Glu Val Gln Leu Leu Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
                                         10
     Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
                                     25
     Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
20
                                 40
     Ser Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
                             55
                                                 60
     Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
                         70
                                             75
     Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
25
                     85
                                         90
     Ala Arg Trp Tyr Ser Tyr Met Leu Arg Met Asp Tyr Trp Gly Gln Gly
                 100
                                     105
     Thr Leu Val Thr Val Ser Ser
             115
30
     <210> 67
     <211> 120
     <212> PRT
     <213> Искусственная
35
     <220>
     <223> искусственно синтезированная последовательность
     <400> 67
     Gln Val Gln Leu Leu Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
     Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
40
                 2.0
                                     25
     Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
     Ser Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
                             55
                                                 60
45
     Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
                         70
                                             75
     Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
```

		85			90		95
	Ala Arg Asp		Met. Tvr	His Pro		Asn Tvr Tro	
		100	1-	105		110	
	Gly Thr Leu	Val Thr	Val Ser	Ser			
5	115			120			
	<210> 68						
	<211> 124						
	<212> PRT						
	<213> Искус	сственная	Ŧ				
10	<220>						
	<223> искус	сственно	синтези	рованная	последов	ательность	
	<400> 68						
	Gln Val Gln		Glu Ser	Gly Pro	=	Val Lys Pro	Ser Glu
	1	5			10		15
15	Thr Leu Ser		Cys Ala		Gly Tyr		Ser Gly
		20	T] - 7	25	D G1	30	
	Tyr Tyr Trp 35	GIY TIP	lie Arg	40	Pro Gly	Lys Gly Let 45	GIU Trp
	Ile Gly Ser	Tlo Tur	Uic Cor		The Tire	-	Sor Tou
20	50	TIE TYL	55	GIY DEL	IIIL IYL	60 ASII 110	ber heu
	Lys Ser Arg	Val Thr		Val Asp	Thr Ser		Phe Ser
	65		70	-	75	-	80
	Leu Lys Leu	Ser Ser	Val Thr	Ala Ala	Asp Thr	Ala Val Tyr	Tyr Cys
		85			90		95
25	Ala Arg Gln	His Ser	Phe Thr	Arg Tyr	Tyr Gly	Tyr Tyr Tyr	Phe Asp
		100		105		110	
	Tyr Trp Gly	Gln Gly	Thr Thr	Val Thr	Val Ser	Ser	
	115			120			
	<210> 69						
30	<211> 120						
	<212> PRT						
	<213> Искус	сственная	1				
		ССТВЕННО	Синтези	пованная	посленов	зательность	
35	<400> 69	CIBCIIIO		pobamian	последов	Ja I CUIDII OCI B	
	Glu Val Gln	Leu Leu	Glu Ser	Gly Gly	Gly Leu	Val Gln Pro	Gly Gly
	1	5			10		15
	Ser Leu Arg	Leu Ser	Cys Ala	Ala Ser	Gly Phe	Thr Phe Ser	Ser Tyr
		20		25		30	
40	Ala Met Ser	Trp Val	Arg Gln	Ala Pro	Gly Lys	Gly Leu Glu	Trp Val
	35			40		45	
	Ser Ala Ile	Ser Gly	Ser Gly	Gly Ser	Thr Tyr	Tyr Ala Asp	Ser Val
	50		55			60	
	Lys Gly Arg	Phe Thr		Arg Asp		Lys Asn Thr	
45	65		70		75		80
	Leu Gln Met		Leu Arg	Ala Glu		Ala Val Tyr	
	7, 7, 7, 7,	85	Пттээ П	Птто П	90	Non Mark Mark	95
	Ala Arg Asp	шуз Trp	ılı. ıllı	TAL PLO	нта теп	Asp Tyr Trp	, ста сти

				100					105					110		
	Gly	Thr	Leu	Val	Thr	Val	Ser	Ser								
			115					120								
	<210)>	70													
5	<21	1>	118													
	<212	2>	PRT													
	<213	3>	Иску	CCTB	енна	Я										
	<220															
	<223		иску	ССТВ	энно	СИН	гезиг	оовая	ная	посл	пелог	зател	тьнос	:ть		
10	<400		70	0015	011110	07111	_ 0071 _I	20241		11000		34200		,,,		
10			Gln	T.e11	Val	Gln	Ser	Glv	Ala	Glu	Val	Lvs	Lvs	Pro	Glv	Ala
	1	val	0111	шса	5	0111	001	O ± y	1114	10	vai	ביים	1 170	110	15	1114
	_	77-1	T 170	77-1	-	Crrc	T 170	717	Cor		Пттх	Πh∽	Dho	Πhγ		Пттх
	ser	Val	Lys		ser	СУЅ	туѕ	Ald	25	GTÀ	туг	TIIT	Pile		GIY	тйт
	m	N/ - +	77.5 -	20	77-7	7	Q1	7.7	_	Q1	Q1	01	T	30	m	14 - ±
15	TÀL	мес	His	ттр	val	Arg	GIII		Pro	СΤΆ	GIII	GTĀ		GIU	тгр	мес
		_	35	_	_	_	_	40		_,	_	_	45		_	
	GLy	_	Ile	Asn	Pro	Asn		Gly	Gly	Thr	Asn	_	Ala	GIn	Lys	Phe
		50					55					60				
		Gly	Arg	Val	Thr		Thr	Arg	Asp	Thr		Ile	Ser	Thr	Ala	Tyr
20	65					70					75					80
	Met	Glu	Leu	Ser	Arg	Leu	Arg	Ser	Asp	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
					85					90					95	
	Ala	Arg	Met	Asp	Tyr	Trp	Met	Leu	Pro	Asp	Val	Trp	Gly	Gln	Gly	Thr
				100					105					110		
25	Leu	Val	Thr	Val	Ser	Ser										
			115													
	<210)>	71													
	<21	1>	120													
	<212	2>	PRT													
30	<213	3>	Иску	ССТВ	енна	F										
	<220)>														
	<223	3>	иску	ССТВ	енно	СИН	гезир	ован	ная	посл	педог	затеј	тьнос	СТЬ		
	<400)>	71													
	Gln	Val	Gln	Leu	Leu	Glu	Ser	Gly	Gly	Gly	Leu	Val	Gln	Pro	Gly	Gly
35	1				5			_	_	10					15	_
	Ser	Leu	Arg	Leu	Ser	Cvs	Ala	Ala	Ser	Glv	Phe	Thr	Phe	Ser	Ser	Tvr
				20		2			25	_				30		_
	Ala	Met	Ser		Val	Ara	Gln	Ala		Glv	Lvs	Glv	T.e.ii		Trp	Val
	1114	1100	35	119	val	1119	0111	40		O± j	ביים	O± y	45	Olu		val
40	Sor	7.1.	Ile	Sor	C1 17	Sor	C1 17		Sor	Прх	Пττη	Пттх		7 cn	Sor	17 a l
40	Ser	50	116	per	СТУ	per	55	СТУ	SET	TIII	тут	60	Ата	Asp	SET	vai
	T		7 20 00	Dho	mb w	T10		7 ~~~	7 00	7 ~ ~	C 0 20		7 ~ ~	mb so	T 011	Ш
	_	GIY	Arg	Pile	TIIT		ser	AIG	ASP	ASII		гуѕ	ASII	TIIT	ьеи	_
	65 -	~ 1		_	~	70	_		~ 1	_	75	- 1	1	_	_	80
	ьeu	GIn	Met	Asn		ьeu	Arg	Ala	GLu		Thr	Ala	val	тyr		Cys
45		_	_	_	85	_	_		_	90	_	_			95	
	Ala	Arg	Asp	_	Trp	Tyr	Tyr	Tyr		Ala	Leu	Asp	Tyr	_	Gly	Gln
				100					105					110		
	Gly	Thr	Leu	Val	Thr	Val	Ser	Ser								

```
115
                                 120
     <210> 72
     <211> 119
     <212> PRT
     <213> Искусственная
5
     <220>
     <223> искусственно синтезированная последовательность
     <400>
     Glu Val Gln Leu Leu Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
                                         10
10
     Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
                                     25
     Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                                 40
     Ser Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
15
                             55
                                                 60
     Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
                         70
                                             75
     Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
                                         90
20
                     85
     Ala Arg Ala Leu Ser Tyr Trp Met Lys Trp Asp Tyr Trp Gly Gln Gly
                 100
                                     105
     Thr Leu Val Thr Val Ser Ser
            115
     <210> 73
25
     <211> 123
     <212> PRT
     <213> Искусственная
     <220>
     <223> искусственно синтезированная последовательность
30
     Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
                                         10
     Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Tyr Tyr
35
                                     25
     Asp Ile Gln Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                                 40
     Ser Ser Ile Ser Pro Ser Gly Gln Ser Thr Tyr Tyr Arg Arg Glu Val
     Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
40
                         70
                                             75
     Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
                                         90
     Ala Arg Arg Thr Gly Arg Glu Tyr Gly Gly Gly Trp Tyr Phe Asp Tyr
                 100
                                     105
45
     Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
             115
     <210> 74
```

```
<211> 120
     <212> PRT
     <213> Искусственная
     <223> искусственно синтезированная последовательность
5
     <400> 74
     Gln Val Gln Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
                                         10
     Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
                 20
                                     25
10
     Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                                 40
     Ser Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
         50
                             55
                                                 60
     Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
15
                         70
                                             75
     Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
                    85
                                         90
     Ala Arg Asp Lys Trp Tyr Tyr Pro Ala Leu Asp Tyr Trp Gly Gln
20
                100
                                   105
                                                        110
     Gly Thr Leu Val Thr Val Ser Ser
            115
                                 120
     <210> 75
     <211> 119
     <212> PRT
25
     <213> Искусственная
     <220>
     <223> искусственно синтезированная последовательность
     <400> 75
     Glu Val Gln Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
30
                                        10
     Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
                                     25
     Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35
                                 40
     Ser Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
                                                 60
                             55
     Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
                         70
                                            75
     Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
40
                    85
                                        90
     Ala Arg Ser Tyr Tyr Tyr Tyr Lys Met Asp Val Trp Gly Gln Gly
                 100
                                     105
     Thr Thr Val Thr Val Ser Ser
            115
45
     <210> 76
     <211> 119
     <212> PRT
```

```
<213> Искусственная
     <220>
     <223> искусственно синтезированная последовательность
     Glu Val Gln Leu Leu Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
5
                                         10
     Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
     Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                                 40
10
     Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val
                             55
     Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
                         70
                                             75
     Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
15
                     8.5
                                         90
     Ala Arg Gln Pro Ser Tyr Tyr Pro Trp Met Asp Tyr Trp Gly Gln Gly
                 100
                                    105
                                                         110
     Thr Leu Val Thr Val Ser Ser
            115
20
     <210> 77
     <211> 118
     <212> PRT
     <213> Искусственная
     <220>
25
     <223> искусственно синтезированная последовательность
     Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
                                         10
     Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Gly Tyr
30
                                     25
     Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
                                 40
     Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe
35
                             55
     Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr
                         70
                                             75
     Met Glu Leu Ser Arg Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
                                         90
     Ala Arg Gly Asn Tyr Tyr Met Phe Met Asp Leu Trp Gly Gln Gly Thr
40
                100
                                     105
                                                         110
     Leu Val Thr Val Tyr Ser
             115
     <210> 78
     <211> 119
45
     <212> PRT
     <213> Искусственная
     <220>
```

```
<223> искусственно синтезированная последовательность
     <400> 78
     Glu Val Gln Leu Leu Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
                                         10
     Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
5
                 20
                                     25
     Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                                 40
     Ser Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
                             55
                                                 60
10
     Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
                         70
                                             75
     Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
                     85
                                         90
15
     Ala Arg Asp Arg Tyr Gly Leu His Met Phe Asp Tyr Trp Gly Gln Gly
                 100
                                     105
                                                         110
     Thr Leu Val Thr Val Ser Ser
            115
     <210> 79
20
     <211> 127
     <212> PRT
     <213> Искусственная
     <223> искусственно синтезированная последовательность
     <400> 79
25
     Glu Val Gln Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
     Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
                 20
                                     25
     Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
30
                                 40
     Ser Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
                             55
                                                 60
     Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
35
                         70
                                             75
     Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
                     85
                                         90
     Ala Arg Met Thr Lys Ser Ser Lys Ser Arg Gly Lys Arg Tyr Tyr Arg
                                     105
     Tyr Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
40
            115
                                 120
                                                     125
     <210> 80
     <211> 111
     <212> PRT
     <213> Искусственная
45
     <220>
     <223> искусственно синтезированная последовательность
```

<400> 80

```
Gln Ser Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
                                        10
     Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
                                     25
     Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
5
                                 40
     Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
     Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
                         70
                                             75
10
     Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Ser Ser Tyr Thr Ser Ser
                     85
                                         90
     Ser Thr Arg Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
                 100
                                     105
                                                         110
15
     <210> 81
     <211> 110
     <212> PRT
     <213> Искусственная
     <220>
20
     <223> искусственно синтезированная последовательность
     <400> 81
     Gln Ser Val Leu Thr Gln Pro Pro Ser Val Ser Ala Ala Pro Gly Gln
     Lys Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Ala Asn Asn
25
                 20
                                     25
     Phe Val Ser Trp Phe Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
     Ile Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser
         50
                             55
                                                  60
     Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln
30
                         70
                                             75
     Thr Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Arg Ser Leu
                                         90
     Ser Ala Gly Val Phe Gly Gly Gly Thr Lys Val Thr Val Leu
35
                 100
                                     105
     <210> 82
     <211> 111
     <212> PRT
     <213> Искусственная
     <220>
40
     <223> искусственно синтезированная последовательность
     Gln Ser Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
                                         10
     Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
45
                 20
                                     25
     Asn Phe Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
```

45

40

35

```
Met Ile Tyr Asp Val Ser Lys Arg Pro Ser Gly Val Ser Thr Arg Phe
                             55
         50
                                                 60
     Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
                                             75
     Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Asn Ser Tyr Thr Thr Ser
5
                     85
                                         90
     Ser Thr Arg Trp Met Phe Gly Gly Gly Thr Lys Val Thr Val Leu
                                     105
     <210> 83
     <211> 111
10
     <212> PRT
     <213> Искусственная
     <220>
     <223> искусственно синтезированная последовательность
15
     Gln Ser Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
                                         10
     Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
                                     25
     Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
20
                                 40
     Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
     Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
25
                         70
                                             75
     Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Ser Ser Tyr Thr Ser Ser
                                         90
     Ser Thr Arg Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
                 100
                                     105
                                                         110
     <210> 84
30
     <211> 111
     <212> PRT
     <213> Искусственная
     <220>
35
     <223> искусственно синтезированная последовательность
     <400> 84
     Gln Ser Ala Leu Thr Gln Pro Arg Ser Val Ser Gly Ser Pro Gly Gln
                                         10
     Ser Val Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Val Tyr
                                                          30
                 20
                                      25
40
     Asp Tyr Val Ser Trp Tyr Gln Gln Phe Pro Gly Lys Ala Pro Lys Leu
                                 40
     Met Ile Tyr Asp Val Asn Lys Arg Pro Ser Gly Val Pro Asp Arg Phe
                             5.5
     Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Val Ser Gly Leu
45
                                             75
                         70
     Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Cys Ser Tyr Ser Gly Thr
```

90

95

85

```
Asp Ile Arg Trp Leu Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
                 100
                                     105
     <210> 85
     <211> 107
     <212> PRT
5
     <213> Искусственная
     <220>
     <223> искусственно синтезированная последовательность
     <400> 85
     Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
10
                                         10
     Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr
                                     25
                 20
     Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Ile
15
                                 40
     Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
         50
                             55
                                                 60
     Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
                         70
                                             75
     Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Phe His Ser Phe Pro Leu
20
                                                             95
                     85
                                         90
     Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
                 100
                                     105
     <210> 86
     <211> 107
25
     <212> PRT
     <213> Искусственная
     <220>
     <223> искусственно синтезированная последовательность
     <400> 86
30
     Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
                                         10
     Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr
                 20
                                     25
     Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Ile
35
                                 40
     Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
                             55
     Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
                         70
                                             75
40
     Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Phe Asn Ser Tyr Pro Leu
                     8.5
                                         90
     Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
                 100
                                     105
45
     <210> 87
     <211> 107
     <212> PRT
     <213> Искусственная
```

```
<220>
     <223> искусственно синтезированная последовательность
     Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
                                          10
5
     Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr
                                     25
     Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
                                 40
     Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
10
                              55
     Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
                                              75
                         70
     Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln Ser Asp Ser Ile Pro Leu
15
                     85
                                          90
     Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
                 100
                                     105
     <210> 88
     <211> 107
20
     <212> PRT
     <213> Искусственная
     <220>
     <223> искусственно синтезированная последовательность
     Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
25
                                         10
     Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr
                                     25
     Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
                                 40
30
     Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
                             55
                                                  60
     Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
                         70
                                              75
35
     Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Phe Tyr Ser Phe Pro Leu
                     85
     Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
                 100
                                     105
     <210> 89
     <211> 107
40
     <212> PRT
     <213> Искусственная
     <223> искусственно синтезированная последовательность
     <400> 89
45
     Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
                                         10
     Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr
```

				20					25					30			
	T.e.11	Asn	Trp		Gln	Gln	Lvs	Pro		Lvs	Ala	Pro	Lvs		T.e.11	Tle	
	шец	11011	35	- 1 -	0111	0111	Lyo	40	O ± y	шуо	riia		45	Lea	деа	110	
	Tvr	Ala	Ala	Ser	Ser	Leu	Gln		Glv	Val	Pro	Ser	-	Phe	Ser	Glv	
5	2	50					55		_			60	2				
	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser	Ser	Leu	Gln	Pro	
	65	_		_		70					75					80	
	Glu	Asp	Phe	Ala	Thr	Tyr	Tyr	Cys	Gln	Gln	Phe	Asp	Asn	Phe	Pro	Leu	
					85					90					95		
10	Thr	Phe	Gly	Gly	Gly	Thr	Lys	Val	Glu	Ile	Lys						
				100					105								
	<210)>	90														
	<21	1>	107														
	<212	2> :	PRT														
15	<213> Искусственная																
	<220)>															
	<223	3> 1	иску	ССТВ	онне	СИН	гезир	рован	ная	посј	тедон	ватеј	тьнос	СТЬ			
	< 400)>	90														
	Asp	Ile	Gln	Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ser	Ala	Ser	Val	Gly	
20	1				5					10					15		
	Asp	Arg	Val	Thr	Ile	Thr	Cys	Arg	Ala	Ser	Gln	Ser	Ile	Ser	Ser	Tyr	
				20					25					30			
	Leu	Asn	Trp	Tyr	Gln	Gln	Lys		Gly	Lys	Ala	Pro		Leu	Leu	Ile	
			35					40					45				
25	Tyr		Ala	Ser	Ser	Leu		Ser	Gly	Val	Pro		Arg	Phe	Ser	Gly	
		50	_		_,	_	55	_,		_,		60	_			_	
		GLy	Ser	GLy	Thr	_	Phe	Thr	Leu	Thr		Ser	Ser	Leu	GIn		
	65	-	D1	7 7	m1	70		~	G 1	G 1	75 D1	2	-	D1	_	80	
20	GIU	Asp	Phe	Ala		Tyr	Tyr	Cys	GIN		Pne	ser	Arg	Pne		Leu	
30	Πh ν	Dho	C1,,,	C1,,,	85 Cl.	Πh∽	T 170	7727	C1.1	90 T10	T 170				95		
	TIII	rne	Gly	100	GIY	TIIL	гуѕ	Val	105	TTE	гуѕ						
	<210	1>	91	100					103								
	<21		107														
35	<212		PRT														
33	<213		Иску	ССТВ	енна	Ŧ											
	<220					_											
	<223	_	иску	ССТВ	енно	СИНТ	гезик	ован	ная	последовательность							
	<400)>					-										
40	Asp	Ile	Gln	Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ser	Ala	Ser	Val	Gly	
	1				5					10					15	_	
	Asp	Arg	Val	Thr	Ile	Thr	Cys	Arg	Ala	Ser	Gln	Ser	Ile	Ser	Ser	Tyr	
				20					25					30			
	Leu	Asn	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Lys	Ala	Pro	Lys	Leu	Leu	Ile	
45			35					40					45				
	Tyr	Ala	Ala	Ser	Ser	Leu	Gln	Ser	Gly	Val	Pro	Ser	Arg	Phe	Ser	Gly	
		50					55					60					
	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser	Ser	Leu	Gln	Pro	

```
65
                         70
                                             75
                                                                  80
     Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Phe Asn Gly Phe Pro Leu
     Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
                 100
5
     <210> 92
     <211> 107
     <212> PRT
     <213> Искусственная
     <220>
10
     <223> искусственно синтезированная последовательность
     Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
                                         10
     Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr
15
                 20
                                     25
     Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
                                 40
     Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
20
                             55
     Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
                         70
                                             75
     Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Phe Ser Arg Phe Pro Leu
     Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
25
                 100
                                     105
     <210> 93
     <211> 107
     <212> PRT
     <213> Искусственная
30
     <223> искусственно синтезированная последовательность
     <400> 93
     Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
35
     Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr
                                                          30
                                      25
     Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Ile
     Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
40
                             55
     Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
                         70
     Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln Val Tyr Arg Ser Pro Leu
                     85
                                         90
45
     Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
                 100
     <210> 94
```

```
<211> 107
     <212> PRT
     <213> Искусственная
     <223> искусственно синтезированная последовательность
5
     <400> 94
     Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
     Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr
                                     25
                 20
10
     Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
                                 40
     Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
                             55
         50
                                                  60
     Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
15
                         70
                                              75
     Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Phe Val Arg His Pro Pro
                     85
                                         90
                                                              95
     Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
                 100
20
                                     105
     <210> 95
     <211> 107
     <212> PRT
     <213> Искусственная
     <220>
25
     <223> искусственно синтезированная последовательность
     Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
                                         10
     Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr
30
                                      25
     Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
                                 40
     Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
35
                             55
     Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
                         70
                                              75
     Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Phe Asn Asn Tyr Pro Leu
     Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
40
                 100
                                     105
     <210> 96
     <211> 107
     <212> PRT
     <213> Искусственная
45
     <220>
     <223> искусственно синтезированная последовательность
```

<400> 96

```
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
                                        10
     Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr
                                     25
5
     Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Ile
                                 40
     Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
     Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
                                             75
                         70
10
     Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln Phe Thr Ser Phe Pro Leu
                     85
                                         90
     Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
                 100
                                     105
     <210> 97
15
     <211> 107
     <212> PRT
     <213> Искусственная
     <220>
20
     <223> искусственно синтезированная последовательность
     <400> 97
     Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
     Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr
25
                 20
                                     25
     Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Ile
     Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
         50
                             55
                                                 60
     Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
30
                         70
                                             75
     Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln Phe Asn Ser Phe Pro Leu
                     85
                                         90
                                                             95
     Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
35
                 100
                                     105
     <210> 98
     <211> 107
     <212> PRT
     <213> Искусственная
     <220>
40
     <223> искусственно синтезированная последовательность
     Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
                                         10
     Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr
45
                                     25
                                                         30
     Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Ile
```

45

40

35

```
Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
         50
                             55
                                                 60
     Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
                         70
                                             75
     Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln Val Tyr Ser Ser Pro Leu
5
                     85
                                         90
     Thr Phe Gly Gly Thr Lys Val Glu Ile Lys
                 100
     <210> 99
     <211> 328
10
     <212> PRT
     <213> Искусственная
     <220>
     <223> искусственно синтезированная последовательность
15
     Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys
                                         10
     Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr
                                     25
     Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser
20
                                 40
     Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser
                             55
     Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr
                         70
                                             75
25
     Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys
                                         90
     Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys
                 100
                                    105
     Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro
30
                                120
     Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys
                            135
                                                 140
     Val Val Asp Val Glu His Glu Asp Pro Glu Val Lys Phe Asn Trp
35
                        150
                                             155
     Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu
                     165
                                         170
     Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu
                                    185
     His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn
40
            195
                                 200
                                                     205
     Lys Ala Phe Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly
         210
                             215
     Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu
                         230
                                             235
45
     Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr
                                        250
     Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
```

			260					265					270		
	Asn Ty	r Lys	Thr	Thr	Pro	Pro	Val	Leu	Asp	Ser	Asp	Gly	Ser	Phe	Phe
		275					280					285			
	Leu Ty		Lys	Leu	Thr		Asp	Lys	Ser	Arg		Gln	Gln	Gly	Asn
5	29		~	~	3	295		~ 3		_	300	_		_	
	Val Ph 305	e Ser	Cys	Ser	Val 310	Met	Hıs	GLu	Ala		Hıs	Asn	His	Tyr	
	Gln Ly	s Ser	T.e11	Ser		Ser	Pro			315					320
	OIN Dy	5 501	шеа	325	шси	DCI	110								
10	<210>	100													
	<211>	399													
	<212>	PRT													
	<213>	Иску	CCTB	енная	1										
	<220>														
15	<223>	иску	CCTB	онне	СИН	гезир	рован	ная	посл	педон	зател	пьнос	СТЬ		
	<400> Leu Gl	100	Dro	Crrc	C 0 70	7 an	Crrc	Dro	7.1.	C1,,,	Πhγ	Dho	Ctro	7 an	7 an
	leu Gi	п дэр	FIO	5	ser	ASII	СУБ	FIO	10	GTY	TIII	rne	Суз	15	ASII
	Asn Ar	g Asn	Gln	-	Cys	Ser	Pro	Cys		Pro	Asn	Ser	Phe	_	Ser
20		_	20		_			25					30		
	Ala Gl	y Gly	Gln	Arg	Thr	Cys	Asp	Ile	Cys	Arg	Gln	Cys	Lys	Gly	Val
		35					40					45			
	Phe Ar		Arg	Lys	Glu		Ser	Ser	Thr	Ser		Ala	Glu	Cys	Asp
2-	50		G 1	D1	'	55	-	G.1	7 . 7	G.1	60	9	3.6	~	G 1
25	Cys Th 65	r Pro	GIY	Pne	H1S	Cys	Leu	GLY	Ala	G1y 75	Cys	Ser	Met	Суѕ	GIU 80
	Gln As	p Cvs	Lvs	Gln		Gln	Glu	Leu	Thr	-	Lvs	Glv	Cvs	Lvs	
		1 -1-	2 -	85	- 2				90	2 -	7 -	- 2	- 1	95	-1
	Cys Cy	s Phe	Gly	Thr	Phe	Asn	Asp	Gln	Lys	Arg	Gly	Ile	Cys	Arg	Pro
30			100					105					110		
	Trp Th		Cys	Ser	Leu	Asp		Lys	Ser	Val	Leu	Val	Asn	Gly	Thr
		115	-			~	120	_	<u> </u>	_		125	-	a	-
	Lys Gl		Asp	Val	Val	Cys 135	GLY	Pro	Ser	Pro	A1a 140	Asp	Leu	Ser	Pro
35	Gly Al		Ser	Val	Thr		Pro	Ala	Pro	Ala		Glu	Pro	Glv	His
55	145	u 501	501	val	150	110	110	1114	110	155	1119	Olu		O ± y	160
	Ser Pr	o Gln	Asp	Ile	Glu	Gly	Arg	Met	Asp	Pro	Lys	Ser	Cys	Asp	Lys
				165					170					175	
	Thr Hi	s Thr	Cys	Pro	Pro	Cys	Pro	Ala	Pro	Glu	Leu	Leu	Gly	Gly	Pro
40			180					185					190		
	Ser Va		Leu	Phe	Pro	Pro		Pro	Lys	Asp	Thr		Met	Ile	Ser
	λ×α πh	195	C1.,	77-1	mbγ	Crrc	200	77-1	77-1	7 an	7727	205	шіс	Clu	7 an
	Arg Th		σ±u	va⊥	TIIL	215	va⊥	va⊥	va⊥	ush	220	Set	1112	GIU	чэр
45	Pro Gl		Lys	Phe	Asn		Tyr	Val	Asp	Glv		Glu	Val	His	Asn
	225		-		230	1	_		1	235					240
	Ala Ly	s Thr	Lys	Pro	Arg	Glu	Glu	Gln	Tyr	Asn	Ser	Thr	Tyr	Arg	Val
				245					250					255	

```
Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu
                 260
                                    265
                                                         270
     Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys
                                 280
5
     Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr
                             295
                                                 300
     Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr
                         310
                                             315
     305
     Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu
                     325
                                         330
10
     Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu
                 340
                                    345
     Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys
                                 360
             355
                                                     365
     Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu
15
                            375
                                                 380
     Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro
     385
                        390
                                             395
     <210> 101
20
     <211> 449
     <212> PRT
     <213> Искусственная
     <223> искусственно синтезированная последовательность
     <400> 101
25
     Gln Val Gln Leu Gln Gln Trp Gly Ala Gly Leu Leu Lys Pro Ser Glu
     Thr Leu Ser Leu Thr Cys Ala Val Tyr Gly Gly Ser Phe Ser Gly Tyr
                 20
                                     25
     Tyr Trp Ser Trp Ile Arg Gln Ser Pro Glu Lys Gly Leu Glu Trp Ile
30
                                 40
     Gly Glu Ile Asn His Gly Gly Tyr Val Thr Tyr Asn Pro Ser Leu Glu
                             55
                                                 60
     Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu
35
                         70
                                             75
     Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala
                                         90
                     85
     Arg Asp Tyr Gly Pro Gly Asn Tyr Asp Trp Tyr Phe Asp Leu Trp Gly
                                    105
     Arg Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser
40
                                120
            115
                                                    125
     Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala
         130
                             135
                                                 140
     Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val
                        150
                                             155
45
     Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala
                    165
                                        170
     Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val
```

		180		185		190
	Pro Ser Ser 195			Gln Thr 200	Tyr Ile Cys	Asn Val Asn His
5	Lys Pro Ser 210	Asn Thr	Lys Val 2	Asp Lys	Lys Val Glu	ı Pro Lys Ser Cys
	Asp Lys Thr 225	His Thr	Cys Pro 1	Pro Cys	Pro Ala Pro 235	Glu Leu Leu Gly 240
	Gly Pro Ser	Val Phe 245	Leu Phe	Pro Pro	Lys Pro Lys 250	S Asp Thr Leu Met 255
10	Ile Ser Arg	Thr Pro	Glu Val '	Thr Cys 265	Val Val Val	Asp Val Ser His 270
	Glu Asp Pro			Asn Trp 280	Tyr Val As _l	O Gly Val Glu Val 285
15	His Asn Ala 290	Lys Thr	Lys Pro 2	Arg Glu	Glu Gln Ty:	Asn Ser Thr Tyr
	305		310		315	Trp Leu Asn Gly 320
20		325			330	Pro Ala Pro Ile 335
20		340		345		g Glu Pro Gln Val 350 s Asn Gln Val Ser
	355	i		360		365 Dile Ala Val Glu
25	370		375	_	380	
	385		390		395	400 r Lys Leu Thr Val
30	_	405	_		410	415 Cys Ser Val Met
	His Glu Ala	420 Leu His	Asn His '	425 Tyr Thr	Gln Lys Se:	430 Leu Ser Leu Ser
	435 Pro	i		440		445
35	<210> 102 <211> 216 <212> PRT <213> Mcky	сственна?	1			
40	<220>			Ованная	последовате	211240012
40	<400> 102		_			r Leu Ser Pro Gly
	1	5			10	15 15 Val Ser Ser Tyr
45		20		25		30 Arg Leu Leu Ile
	35			40		45 Arg Phe Ser Gly
	-1- 1105 1110	. 501 71011	1119 1114	O-y		

	5()				55					60				
	Ser G	y Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser	Ser	Leu	Glu	Pro
	65				70					75					80
	Glu As	sp Phe	Ala	Val	Tyr	Tyr	Cys	Gln	Gln	Arg	Ser	Asn	Trp	Pro	Pro
5				85					90					95	
	Ala Le	eu Thr	Phe	Gly	Gly	Gly	Thr	Lys	Val	Glu	Ile	Lys	Arg	Thr	Val
			100					105					110		
	Ala Al	a Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Ser	Asp	Glu	Gln	Leu	Lys
		115					120					125			
10	Ser G	_	Ala	Ser	Val		Cys	Leu	Leu	Asn		Phe	Tyr	Pro	Arg
	13		_			135	_				140				
	Glu Al	.a Lys	Val	Gln		Lys	Val	Asp	Asn		Leu	Gln	Ser	Gly	
	145	01	0	T7 - 7	150	Q1	Q1	7	0	155	7	0	m1	m	160
15	Ser G	n Glu	Ser	Val 165	Thr	GLu	GIn	Asp	Ser 170	Lys	Asp	Ser	Thr	Tyr 175	ser
15	Tou Co	x Cox	mh x		mhγ	T 011	Cor	T 170		7 an	П. т. т.	C1.,	T 170		T 110
	Leu Se	er ser	180	ьеи	TIII	ьеи	ser	цуS 185	АІа	Asp	тут	GIU	цуS 190	птѕ	цуѕ
	Val Ty	ır Ala		Glu	Val	Thr	His		Glv	T.e11	Ser	Ser		Val	Thr
	V 4	195	_	Olu	vai		200	0111	O ± y	ДСИ	501	205	110	vai	
20	Lys Se			Ara	Glv	Glu									
	21			ر	2	215	_								
	<210>	103													
	<211>	444													
	<212>	PRT													
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\														
25	<213>		CCTB	енная	Ŧ										
25			ССТВ	енная	Ŧ.										
25	<213>	Иску	CCTB			гезиј	оован	ная	посј	педон	зател	пьно	СТЬ		
25	<213> <220>	Иску				гезиј	ован	ная	посј	тедон	ватеј	льно(СТЬ		
25	<213> <220> <223>	Иску иску 103	ССТВ	енно Val	СИН	-			Glu					_	Glu
<i>25 30</i>	<213> <220> <223> <400> Glu Va	Иску иску 103 al Gln	сстве Leu	енно Val 5	син: Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	15	
	<213> <220> <223> <400> Glu Va	Иску иску 103 al Gln	CCTB6 Leu	енно Val 5	син: Gln	Ser	Gly	Ala Ser	Glu 10	Val	Lys	Lys	Pro Ser	15	
	<213> <220> <223> <400> Glu Va 1 Ser Le	Иску иску 103 al Gln eu Arg	Leu Ile 20	енно Val 5 Ser	син: Gln Cys	Ser Lys	Gly Gly	Ala Ser 25	Glu 10 Gly	Val Tyr	Lys Ser	Lys Phe	Pro Ser 30	15 Thr	Tyr
	<213> <220> <223> <400> Glu Va	Иску иску 103 al Gln eu Arg	Leu Ile 20	енно Val 5 Ser	син: Gln Cys	Ser Lys	Gly Gly Met	Ala Ser 25	Glu 10 Gly	Val Tyr	Lys Ser	Lys Phe Leu	Pro Ser 30	15 Thr	Tyr
30	<213> <220> <223> <400> Glu Va 1 Ser Le	Иску 103 al Gln eu Arg	Leu Ile 20 Trp	eнно Val 5 Ser Val	синт Gln Cys Arg	Ser Lys Gln	Gly Gly Met	Ala Ser 25 Pro	Glu 10 Gly	Val Tyr Lys	Lys Ser Gly	Lys Phe Leu 45	Pro Ser 30 Glu	15 Thr	Tyr Met
	<213> <220> <223> <400> Glu Va 1 Ser Le Trp II	Иску иску 103 al Gln eu Arg e Ser 35	Leu Ile 20 Trp	eнно Val 5 Ser Val	синт Gln Cys Arg	Ser Lys Gln Asp	Gly Gly Met	Ala Ser 25 Pro	Glu 10 Gly	Val Tyr Lys	Lys Ser Gly Tyr	Lys Phe Leu 45	Pro Ser 30 Glu	15 Thr	Tyr Met
30	<213> <220> <223> <400> Glu Va 1 Ser Le Trp II Gly Ly 50	Иску 103 al Gln eu Arg .e Ser 35 vs Ile	Leu Ile 20 Trp	Val 5 Ser Val Pro	CUHT Gln Cys Arg	Ser Lys Gln Asp 55	Gly Gly Met 40 Ser	Ala Ser 25 Pro	Glu 10 Gly Gly Thr	Val Tyr Lys Asn	Lys Ser Gly Tyr	Lys Phe Leu 45 Ser	Pro Ser 30 Glu Pro	15 Thr Trp Ser	Tyr Met Phe
30	<213> <220> <223> <400> Glu Va 1 Ser Le Trp II Gly Ly 50 Gln Gi	Иску 103 al Gln eu Arg .e Ser 35 vs Ile	Leu Ile 20 Trp	Val 5 Ser Val Pro	CUHT Gln Cys Arg	Ser Lys Gln Asp 55	Gly Gly Met 40 Ser	Ala Ser 25 Pro	Glu 10 Gly Gly Thr	Val Tyr Lys Asn	Lys Ser Gly Tyr	Lys Phe Leu 45 Ser	Pro Ser 30 Glu Pro	15 Thr Trp Ser	Tyr Met Phe
30	<213> <220> <223> <400> Glu Va 1 Ser Le Trp II Gly Ly 50 Gln Gl 65	Иску 103 al Gln eu Arg Le Ser 35 vs Ile	Leu Ile 20 Trp Tyr Val	eнно Val 5 Ser Val Pro	Cинт Gln Cys Arg Gly Ile 70	Ser Lys Gln Asp 55 Ser	Gly Gly Met 40 Ser	Ala Ser 25 Pro Tyr Asp	Glu 10 Gly Gly Thr	Val Tyr Lys Asn Ser 75	Lys Ser Gly Tyr 60 Ile	Lys Phe Leu 45 Ser	Pro Ser 30 Glu Pro	15 Thr Trp Ser	Tyr Met Phe Tyr
30	<213> <220> <223> <400> Glu Va 1 Ser Le Trp II Gly Ly 50 Gln Gi	Иску 103 al Gln eu Arg Le Ser 35 vs Ile	Leu Ile 20 Trp Tyr Val	eнно Val 5 Ser Val Pro	Cинт Gln Cys Arg Gly Ile 70	Ser Lys Gln Asp 55 Ser	Gly Gly Met 40 Ser	Ala Ser 25 Pro Tyr Asp	Glu 10 Gly Gly Thr	Val Tyr Lys Asn Ser 75	Lys Ser Gly Tyr 60 Ile	Lys Phe Leu 45 Ser	Pro Ser 30 Glu Pro	15 Thr Trp Ser	Tyr Met Phe Tyr
<i>30 35</i>	<213> <220> <223> <400> Glu Va 1 Ser Le Trp II Gly Ly 50 Gln Gl 65	Иску иску 103 al Gln eu Arg .e Ser 35 vs Ile .y Gln	Leu Ile 20 Trp Tyr Val	Val 5 Ser Val Pro Thr Ser 85	Синт Gln Cys Arg Gly Ile 70 Leu	Ser Lys Gln Asp 55 Ser Lys	Gly Gly Met 40 Ser Ala	Ala Ser 25 Pro Tyr Asp Ser	Glu 10 Gly Gly Thr Lys Asp	Val Tyr Lys Asn Ser 75 Thr	Lys Ser Gly Tyr 60 Ile	Lys Phe Leu 45 Ser Ser	Pro Ser 30 Glu Pro Thr	15 Thr Trp Ser Ala Tyr 95	Tyr Met Phe Tyr 80 Cys
<i>30 35</i>	<213> <220> <223> <400> Glu Va 1 Ser Le Trp II Gly Ly 50 Gln Gl 65 Leu Gl	Иску иску 103 al Gln eu Arg .e Ser 35 vs Ile .y Gln	Leu Ile 20 Trp Tyr Val	Val 5 Ser Val Pro Thr Ser 85	Синт Gln Cys Arg Gly Ile 70 Leu	Ser Lys Gln Asp 55 Ser Lys	Gly Gly Met 40 Ser Ala	Ala Ser 25 Pro Tyr Asp Ser	Glu 10 Gly Gly Thr Lys Asp	Val Tyr Lys Asn Ser 75 Thr	Lys Ser Gly Tyr 60 Ile	Lys Phe Leu 45 Ser Ser	Pro Ser 30 Glu Pro Thr	15 Thr Trp Ser Ala Tyr 95	Tyr Met Phe Tyr 80 Cys
<i>30 35</i>	<213> <220> <223> <400> Glu Va 1 Ser Le Trp II Gly Ly 50 Gln Gl 65 Leu Gl	Иску иску 103 al Gln eu Arg .e Ser 35 vs Ilee .y Gln .n Trp	Leu Ile 20 Trp Tyr Val Ser Tyr 100	Val 5 Ser Val Pro Thr Ser 85 Gly	Gln Cys Arg Gly Ile 70 Leu Ile	Ser Lys Gln Asp 55 Ser Lys	Gly Gly Met 40 Ser Ala Ala Asp	Ala Ser 25 Pro Tyr Asp Ser Tyr 105	Glu 10 Gly Gly Thr Lys Asp 90 Trp	Val Tyr Lys Asn Ser 75 Thr	Lys Ser Gly Tyr 60 Ile Ala Gln	Lys Phe Leu 45 Ser Ser Met	Pro Ser 30 Glu Pro Thr Tyr Thr 110	15 Thr Trp Ser Ala Tyr 95 Leu	Tyr Met Phe Tyr 80 Cys Val
<i>30 35</i>	<213> <220> <223> <400> Glu Va 1 Ser Le Trp II Gly Le 50 Gln Gl 65 Leu Gl Ala Ala	Иску иску 103 al Gln eu Arg .e Ser 35 vs Ilee .y Gln .n Trp	Leu Ile 20 Trp Tyr Val Ser Tyr 100 Ser	Val 5 Ser Val Pro Thr Ser 85 Gly	Gln Cys Arg Gly Ile 70 Leu Ile	Ser Lys Gln Asp 55 Ser Lys	Gly Gly Met 40 Ser Ala Ala Asp	Ala Ser 25 Pro Tyr Asp Ser Tyr 105	Glu 10 Gly Gly Thr Lys Asp 90 Trp	Val Tyr Lys Asn Ser 75 Thr	Lys Ser Gly Tyr 60 Ile Ala Gln	Lys Phe Leu 45 Ser Ser Met	Pro Ser 30 Glu Pro Thr Tyr Thr 110	15 Thr Trp Ser Ala Tyr 95 Leu	Tyr Met Phe Tyr 80 Cys Val
<i>30 35</i>	<213> <220> <223> <400> Glu Va 1 Ser Le Trp II Gly Le 50 Gln Gl 65 Leu Gl Ala Ala	Иску иску 103 al Gln eu Arg es Ser 35 vs Ile y Gln n Trp eg Gly al Ser 115	Leu Ile 20 Trp Tyr Val Ser 100 Ser	eнно Val 5 Ser Val Pro Thr Ser 85 Gly Ala	Gln Cys Arg Gly Ile 70 Leu Ile Ser	Ser Lys Gln Asp 55 Ser Lys Phe	Gly Gly Met 40 Ser Ala Ala Asp Lys 120	Ala Ser 25 Pro Tyr Asp Ser Tyr 105 Gly	Glu 10 Gly Gly Thr Lys Asp 90 Trp	Val Tyr Lys Asn Ser 75 Thr Gly Ser	Lys Ser Gly Tyr 60 Ile Ala Gln Val	Lys Phe Leu 45 Ser Ser Met Gly Phe 125	Pro Ser 30 Glu Pro Thr Tyr Thr 110 Pro	15 Thr Trp Ser Ala Tyr 95 Leu	Tyr Met Phe Tyr 80 Cys Val Ala
<i>30 35</i>	<213> <220> <223> <400> Glu Va 1 Ser Le Trp II Gly Ly 50 Gln G 65 Leu G Ala An Thr Va Pro Se 13	Иску иску 103 al Gln eu Arg ex Ser 35 vs Ile y Gln n Trp erg Gly al Ser 115 er Ser 30	Leu Ile 20 Trp Tyr Val Ser 100 Ser	eнно Val 5 Ser Val Pro Thr Ser 85 Gly Ala Ser	CUHE Gln Cys Arg Gly Ile 70 Leu Ile Ser Thr	Ser Lys Gln Asp 55 Ser Lys Phe Thr ser 135	Gly Gly Met 40 Ser Ala Ala Asp Lys 120 Gly	Ala Ser 25 Pro Tyr Asp Ser Tyr 105 Gly Gly	Glu 10 Gly Gly Thr Lys Asp 90 Trp Pro	Val Tyr Lys Asn Ser 75 Thr Gly Ser Ala	Lys Ser Gly Tyr 60 Ile Ala Gln Val Ala 140	Lys Phe Leu 45 Ser Ser Met Gly Phe 125 Leu	Pro Ser 30 Glu Pro Thr Tyr Thr 110 Pro	15 Thr Trp Ser Ala Tyr 95 Leu Leu Cys	Tyr Met Phe Tyr 80 Cys Val Ala Leu
<i>30 35</i>	<213> <220> <223> <400> Glu Va 1 Ser Le Trp II Gly Ly 50 Gln Gi 65 Leu Gi Ala An Thr Va Pro Se	Иску иску 103 al Gln eu Arg ex Ser 35 vs Ile y Gln n Trp erg Gly al Ser 115 er Ser 30	Leu Ile 20 Trp Tyr Val Ser 100 Ser	eнно Val 5 Ser Val Pro Thr Ser 85 Gly Ala Ser	CUHE Gln Cys Arg Gly Ile 70 Leu Ile Ser Thr	Ser Lys Gln Asp 55 Ser Lys Phe Thr ser 135	Gly Gly Met 40 Ser Ala Ala Asp Lys 120 Gly	Ala Ser 25 Pro Tyr Asp Ser Tyr 105 Gly Gly	Glu 10 Gly Gly Thr Lys Asp 90 Trp Pro	Val Tyr Lys Asn Ser 75 Thr Gly Ser Ala	Lys Ser Gly Tyr 60 Ile Ala Gln Val Ala 140	Lys Phe Leu 45 Ser Ser Met Gly Phe 125 Leu	Pro Ser 30 Glu Pro Thr Tyr Thr 110 Pro	15 Thr Trp Ser Ala Tyr 95 Leu Leu Cys	Tyr Met Phe Tyr 80 Cys Val Ala Leu

	Ala Leu	Thr S	Ser Gly	Val	His	Thr	Phe	Pro 170	Ala	Val	Leu	Gln	Ser	Ser
	Gly Leu	-	Ser Leu	Ser	Ser	Val	Val	Thr	Val	Pro	Ser	Ser	Ser	Leu
5	Gly Thr	Gln T	Thr Tyr	Ile	Cys	Asn 200	Val	Asn	His	Lys	Pro 205	Ser	Asn	Thr
	Lys Val		Lys Lys	Val	Glu 215	Pro	Lys	Ser	Cys	Asp 220	Lys	Thr	His	Thr
10	Cys Pro 225	Pro C	Cys Pro	Ala 230	Pro	Glu	Leu	Leu	Gly 235	Gly	Pro	Ser	Val	Phe 240
	Leu Phe	Pro F	Pro Lys 245	Pro	Lys	Asp	Thr	Leu 250	Met	Ile	Ser	Arg	Thr 255	Pro
	Glu Val	2	260			_	265				_	270		
15	Lys Phe	275				280					285			
	Lys Pro 290	_			295				_	300				
20	Leu Thr			310	_	_			315	_		_	_	320
	Lys Val		325					330					335	
	Lys Ala	3	340				345			_		350		
25	_	355	Glu Leu		_	360					365	_		
	Lys Gly				375					380				
30	Gln Pro 385	GLu A	Asn Asn	Tyr 390	Lys	Thr	Thr	Pro	395	Val	Leu	Asp	Ser	400
	_		Phe Leu 405	_		_		410		_	_		415	_
	Gln Gln	4	120				425				Glu	Ala 430	Leu	His
35	Asn His	Tyr 1 435	Thr Gln	Lys	Ser	Leu 440	Ser	Leu	Ser	Pro				
		104 214												
40		PRT Искусс	ственная	I										
	<220> <223>	искусс	ственно	СИНТ	гезир	ован	ная	последовательность						
		104 Glu I	Leu Thr	Gln	Pro	Pro	Ser	Val	Ser	Val	Ser	Pro	Glv	Gln
45	1		5 [le Thr					10					15	
		2	20	_			25				_	30	_	
	His Trp	ıyr G	atii GTU	туѕ	LT.O	σтλ	GTU	ser	LT.O	νal	ьеи	val	тте	тАц

			35					40					45			
	Gln	Asp	Lys	Asn	Arg	Pro	Ser 55	Gly	Ile	Pro	Glu	Arg 60	Phe	Ser	Gly	Ser
5	Asn 65	Ser	Gly	Asn	Thr	Ala 70	Thr	Leu	Thr	Ile	Ser 75	Gly	Thr	Gln	Ala	Met 80
	Asp	Glu	Ala	Asp	Tyr 85	Tyr	Cys	Ala	Thr	Tyr 90	Thr	Gly	Phe	Gly	Ser 95	Leu
	Ala	Val	Phe	Gly 100	Gly	Gly	Thr	Lys	Leu 105	Thr	Val	Leu	Gln	Gln 110	Pro	Lys
10	Ala	Ala	Pro 115	Ser	Val	Thr	Leu	Phe 120	Pro	Pro	Ser	Ser	Glu 125	Glu	Leu	Gln
	Ala	Asn 130	Lys	Ala	Thr	Leu	Val 135	Cys	Leu	Ile	Ser	Asp 140	Phe	Tyr	Pro	Gly
15	Ala 145	Val	Thr	Val	Ala	Trp 150	Lys	Ala	Asp	Ser	Ser 155	Pro	Val	Lys	Ala	Gly 160
	Val	Glu	Thr	Thr	Thr 165	Pro	Ser	Lys	Gln	Ser 170	Asn	Asn	Lys	Tyr	Ala 175	Ala
	Ser	Ser	Tyr	Leu 180	Ser	Leu	Thr	Pro	Glu 185	Gln	Trp	Lys	Ser	His 190	Arg	Ser
20	Tyr	Ser	Cys 195	Gln	Val	Thr	His	Glu 200	Gly	Ser	Thr	Val	Glu 205	Lys	Thr	Val
	Ala	Pro 210	Thr	Glu	Cys	Ser										
	<210	0> :	105													
25	<21		163													
25	<212	2>]	PRT													
25	<212 <213	2> 1 3> 1	PRT Homo	sapi	iens											
25	<212 <213 <400	2> 1 3> 1 0> 1	PRT Homo 105			0	7	Cara	Dave	7 .	Cl.	ml	Dl	Cara	7	7
	<212 <213 <400 Leu	2> 1 3> 1 0> 1	PRT Homo		Cys	Ser	Asn	Cys	Pro		Gly	Thr	Phe	Cys		Asn
25 30	<213 <213 <400 Leu 1	2> 1 3> 1 0> 3 Gln	PRT Homo 105	Pro Gln	Cys 5				Cys	10				Phe	15	
	<212 <213 <400 Leu 1 Asn	2> 1 3> 1 0> 1 Gln Arg	PRT Homo 105 Asp	Pro Gln 20	Cys 5 Ile	Cys	Ser	Pro	Cys 25	10 Pro	Pro	Asn	Ser	Phe	15 Ser	Ser
	<212 <213 <400 Leu 1 Asn	2> 1 3> 1 0> 5 Gln Arg	PRT Homo 105 Asp Asn Gly	Pro Gln 20 Gln	Cys 5 Ile Arg	Cys Thr	Ser Cys	Pro Asp 40	Cys 25 Ile	10 Pro Cys	Pro Arg	Asn Gln	Ser Cys 45	Phe 30 Lys	15 Ser Gly	Ser Val
30	<212 <400 Leu 1 Asn Ala	2> 1 3> 1 0> 3 Gln Arg Gly Arg	Homo 105 Asp Asn Gly 35	Pro Gln 20 Gln Arg	Cys 5 Ile Arg	Cys Thr Glu	Ser Cys Cys 55	Pro Asp 40 Ser	Cys 25 Ile Ser	10 Pro Cys Thr	Pro Arg Ser	Asn Gln Asn 60	Ser Cys 45 Ala	Phe 30 Lys Glu	15 Ser Gly Cys	Ser Val Asp
30	<212 <213 <400 Leu 1 Asn Ala Phe Cys 65	2> 1 3> 1 0> 5 Gln Arg Gly Arg 50 Thr	PRT Homo 105 Asp Asn Gly 35 Thr	Pro Gln 20 Gln Arg Gly	Cys 5 Ile Arg Lys	Cys Thr Glu His 70	Ser Cys Cys 55 Cys	Pro Asp 40 Ser Leu	Cys 25 Ile Ser	10 Pro Cys Thr	Pro Arg Ser Gly 75	Asn Gln Asn 60 Cys	Ser Cys 45 Ala Ser	Phe 30 Lys Glu Met	15 Ser Gly Cys	Ser Val Asp Glu 80
<i>30 35</i>	<212 <213 <400 Leu 1 Asn Ala Phe Cys 65 Gln	2> 1 3> 1 0> 2 Gln Arg Gly Arg 50 Thr	PRT Homo 105 Asp Asn Gly 35 Thr	Pro Gln 20 Gln Arg Gly Lys	Cys 5 Ile Arg Lys Phe Gln 85	Cys Thr Glu His 70 Gly	Ser Cys Cys 55 Cys	Pro Asp 40 Ser Leu Glu	Cys 25 Ile Ser Gly Leu	10 Pro Cys Thr Ala Thr 90	Pro Arg Ser Gly 75 Lys	Asn Gln Asn 60 Cys Lys	Ser Cys 45 Ala Ser	Phe 30 Lys Glu Met	15 Ser Gly Cys Cys Lys 95	Ser Val Asp Glu 80 Asp
<i>30 35</i>	<212 <400 Leu 1 Asn Ala Phe Cys 65 Gln Cys	2> 1 3> 1 0> 2 Gln Arg Gly Arg 50 Thr Asp Cys	PRT Homo 105 Asp Asn Gly 35 Thr Pro	Pro Gln 20 Gln Arg Gly Lys Gly 100	Cys 5 Ile Arg Lys Phe Gln 85 Thr	Cys Thr Glu His 70 Gly Phe	Ser Cys Cys 55 Cys Gln Asn	Pro Asp 40 Ser Leu Glu Asp	Cys 25 Ile Ser Gly Leu Gln 105	10 Pro Cys Thr Ala Thr 90 Lys	Pro Arg Ser Gly 75 Lys Arg	Asn Gln Asn 60 Cys Lys Gly	Ser Cys 45 Ala Ser Gly Ile	Phe 30 Lys Glu Met Cys Cys 110	15 Ser Gly Cys Cys Lys 95 Arg	Ser Val Asp Glu 80 Asp Pro
<i>30 35</i>	<212 <400 Leu 1 Asn Ala Phe Cys 65 Gln Cys Trp	2> 1 3> 1 0> 3 Gln Arg Gly Arg 50 Thr Asp Cys	PRT Homo 105 Asp Asn Gly 35 Thr Pro Cys Phe Asn	Pro Gln 20 Gln Arg Gly Lys Gly 100 Cys	Cys 5 Ile Arg Lys Phe Gln 85 Thr	Cys Thr Glu His 70 Gly Phe Leu	Ser Cys Cys 55 Cys Gln Asn	Pro Asp 40 Ser Leu Glu Asp Gly 120	Cys 25 Ile Ser Gly Leu Gln 105 Lys	10 Pro Cys Thr Ala Thr 90 Lys	Pro Arg Ser Gly 75 Lys Arg Val	Asn Gln Asn 60 Cys Lys Gly Leu	Ser Cys 45 Ala Ser Gly Ile Val 125	Phe 30 Lys Glu Met Cys Cys 110 Asn	15 Ser Gly Cys Cys Lys 95 Arg	Ser Val Asp Glu 80 Asp Pro

```
Ser Pro Gln
     <210> 106
     <211> 39
     <212> PRT
     <213> Homo sapiens
5
     <400> 106
     Leu Gln Asp Pro Cys Ser Asn Cys Pro Ala Gly Thr Phe Cys Asp Asn
                     5
                                         10
     Asn Arg Asn Gln Ile Cys Ser Pro Cys Pro Pro Asn Ser Phe Ser Ser
                                     25
                                                         30
10
                 20
     Ala Gly Gly Gln Arg Thr Cys
             35
     <210> 107
     <211> 41
     <212> PRT
15
     <213> Homo sapiens
     <400> 107
     Ser Pro Cys Pro Pro Asn Ser Phe Ser Ser Ala Gly Gly Gln Arg Thr
     Cys Asp Ile Cys Arg Gln Cys Lys Gly Val Phe Arg Thr Arg Lys Glu
20
                 20
                                                         30
     Cys Ser Ser Thr Ser Asn Ala Glu Cys
            35
                                 40
     <210> 108
     <211> 31
25
     <212> PRT
     <213> Homo sapiens
     <400> 108
     Asp Cys Thr Pro Gly Phe His Cys Leu Gly Ala Gly Cys Ser Met Cys
                                         10
30
     Glu Gln Asp Cys Lys Gln Gly Gln Glu Leu Thr Lys Lys Gly Cys
                 20
                                     25
     <210> 109
     <211> 69
     <212> PRT
35
     <213> Homo sapiens
     <400> 109
     Lys Asp Cys Cys Phe Gly Thr Phe Asn Asp Gln Lys Arg Gly Ile Cys
     Arg Pro Trp Thr Asn Cys Ser Leu Asp Gly Lys Ser Val Leu Val Asn
40
                 20
                                     2.5
     Gly Thr Lys Glu Arg Asp Val Val Cys Gly Pro Ser Pro Ala Asp Leu
                                 40
     Ser Pro Gly Ala Ser Ser Val Thr Pro Pro Ala Pro Ala Arg Glu Pro
45
                             55
                                                 60
     Gly His Ser Pro Gln
     <210> 110
```

```
<211> 94
     <212> PRT
     <213> Homo sapiens
     <400> 110
     Leu Gln Asp Pro Cys Ser Asn Cys Pro Ala Gly Thr Phe Cys Asp Asn
5
                                          10
     Asn Arg Asn Gln Ile Cys Ser Pro Cys Pro Pro Asn Ser Phe Ser Ser
     Ala Gly Gly Gln Arg Thr Cys Asp Ile Cys Arg Gln Cys Lys Gly Val
                                  40
10
     Phe Arg Thr Arg Lys Glu Cys Ser Ser Thr Ser Asn Ala Glu Cys Asp
                             55
     Cys Thr Pro Gly Phe His Cys Leu Gly Ala Gly Cys Ser Met Cys Glu
                          70
                                             75
15
     Gln Asp Cys Lys Gln Gly Gln Glu Leu Thr Lys Lys Gly Cys
                     8.5
                                          90
     <210> 111
     <211> 63
     <212> PRT
20
     <213> Homo sapiens
     <400> 111
     Leu Gln Asp Pro Cys Ser Asn Cys Pro Ala Gly Thr Phe Cys Asp Asn
     Asn Arg Asn Gln Ile Cys Ser Pro Cys Pro Pro Asn Ser Phe Ser Ser
25
                                      25
     Ala Gly Gly Gln Arg Thr Cys Asp Ile Cys Arg Gln Cys Lys Gly Val
     Phe Arg Thr Arg Lys Glu Cys Ser Ser Thr Ser Asn Ala Glu Cys
         50
                             55
                                                  60
     <210> 112
30
     <211> 141
     <212> PRT
     <213> Homo sapiens
     <400> 112
35
     Ser Pro Cys Pro Pro Asn Ser Phe Ser Ser Ala Gly Gly Gln Arg Thr
                                         10
     Cys Asp Ile Cys Arg Gln Cys Lys Gly Val Phe Arg Thr Arg Lys Glu
                 20
                                      25
     Cys Ser Ser Thr Ser Asn Ala Glu Cys Asp Cys Thr Pro Gly Phe His
                                  40
40
     Cys Leu Gly Ala Gly Cys Ser Met Cys Glu Gln Asp Cys Lys Gln Gly
                             55
     Gln Glu Leu Thr Lys Lys Gly Cys Lys Asp Cys Cys Phe Gly Thr Phe
                         70
                                              75
     Asn Asp Gln Lys Arg Gly Ile Cys Arg Pro Trp Thr Asn Cys Ser Leu
45
                     85
                                          90
     Asp Gly Lys Ser Val Leu Val Asn Gly Thr Lys Glu Arg Asp Val Val
                                      105
                 100
                                                          110
```

```
Cys Gly Pro Ser Pro Ala Asp Leu Ser Pro Gly Ala Ser Ser Val Thr
            115
                          120
     Pro Pro Ala Pro Ala Arg Glu Pro Gly His Ser Pro Gln
                            135
5
     <210> 113
     <211> 72
     <212> PRT
     <213> Homo sapiens
     <400> 113
     Ser Pro Cys Pro Pro Asn Ser Phe Ser Ser Ala Gly Gly Gln Arg Thr
10
                     5
                                         10
     Cys Asp Ile Cys Arg Gln Cys Lys Gly Val Phe Arg Thr Arg Lys Glu
                                     25
                 20
     Cys Ser Ser Thr Ser Asn Ala Glu Cys Asp Cys Thr Pro Gly Phe His
15
                                 40
     Cys Leu Gly Ala Gly Cys Ser Met Cys Glu Gln Asp Cys Lys Gln Gly
        50
                            55
                                                 60
     Gln Glu Leu Thr Lys Lys Gly Cys
     <210> 114
20
     <211> 100
     <212> PRT
     <213> Homo sapiens
     <400> 114
     Asp Cys Thr Pro Gly Phe His Cys Leu Gly Ala Gly Cys Ser Met Cys
25
                    5
                                         10
     Glu Gln Asp Cys Lys Gln Gly Gln Glu Leu Thr Lys Lys Gly Cys Lys
                                     25
     Asp Cys Cys Phe Gly Thr Phe Asn Asp Gln Lys Arg Gly Ile Cys Arg
                                 40
30
     Pro Trp Thr Asn Cys Ser Leu Asp Gly Lys Ser Val Leu Val Asn Gly
                             55
     Thr Lys Glu Arg Asp Val Val Cys Gly Pro Ser Pro Ala Asp Leu Ser
                         70
                                             75
35
     Pro Gly Ala Ser Ser Val Thr Pro Pro Ala Pro Ala Arg Glu Pro Gly
                                         90
                    8.5
                                                             95
     His Ser Pro Gln
                 100
     <210> 115
     <211> 115
40
     <212> PRT
     <213> Искусственная
     <223> искусственно синтезированная последовательность
     <400> 115
45
     Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
                                         10
     Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr
```

		20		25		30
	Glu Met His	Trp Ile	Arg Gln	Pro Pro	Gly Gln Gly	Leu Glu Trp Ile
	35			40		45
	Gly Ala Ile	Asp Pro	Lys Thr	Gly Asp	Thr Ala Tyr	Ser Gln Lys Phe
5	50		55		60	
		Val Thr	Leu Thr	Ala Asp	_	Ser Thr Ala Tyr
	65		70		75	80
	Met Glu Leu		Leu Thr	Ser Glu		Val Tyr Tyr Cys
10	mb a Naca Db a	85 	m mb	П	90	95
10	Thr Arg Phe	Tyr Ser	Tyr Tnr	Tyr Trp	GIA GIU GIZ	Thr Leu Val Thr 110
	Val Ser Ser			103		110
	115					
	<210> 116					
15	<211> 112					
	<212> PRT					
	<213> Иску	сственна	Я			
	<220>					
	<223> иску	сственно	синтези	рованная	последовате	ельность
20	<400> 116					
	Asp Ile Val		Gln Ser	Pro Leu		Val Thr Pro Gly
	1	5			10	15
	Glu Pro Ala	Ser lle	Ser Cys	Arg Ser	Ser GIn Ser	: Leu Val His Ser 30
25	Aen Ara Aen		Lau Hie		Cln Cln Ive	Pro Gly Gln Ala
23	35	IIIL IYL	ica niis	40	OIN OIN Hys	45
		Leu Ile	Tyr Lys		Asn Arg Phe	e Ser Gly Val Pro
	50		55		60	-
	Asp Arg Phe	Ser Gly	Ser Gly	Ser Gly	Thr Asp Phe	e Thr Leu Lys Ile
30	65		70		75	80
	Ser Arg Val	Glu Ala	Glu Asp	Val Gly	Val Tyr Tyr	Cys Ser Gln Asn
		85			90	95
	Thr His Val		Thr Phe	_	Gly Thr Lys	Leu Glu Ile Lys
25	.010> 117	100		105		110
35	<210> 117 <211> 328					
	<211> 326 <212> PRT					
		сственна	я			
	<220>		-			
40	<223> иску	сственно	синтези	рованная	последовате	ельность
	<400> 117					
	Ala Ser Thr	Lys Gly	Pro Ser	Val Phe	Pro Leu Ala	Pro Ser Ser Lys
	1	5			10	15
	Ser Thr Ser	Gly Gly	Thr Ala		Gly Cys Leu	val Lys Asp Tyr
45		20		25		30
		Pro Val	Thr Val	_	Asn Ser Gly	Ala Leu Thr Ser
	35	m1	D., 3.7	40	01-0	45
	GIY VAI HIS	Inr Phe	Pro Ala	val Leu	GIN Ser Ser	Gly Leu Tyr Ser

	į.	50					55					60				
	Leu S	Ser	Ser	Val	Val	Thr	Val	Pro	Ser	Ser	Ser	Leu	Gly	Thr	Gln	Thr
	65					70					75					80
	Tyr I	Ile	Cys	Asn		Asn	His	Lys	Pro		Asn	Thr	Lys	Val	-	Lys
5	Lys \		C1,,	Dro	85	Sor	Cvc	7 cn	Two	90 Thr	піс	Пhх	Ctrc	Dro	95 Bro	Cus
	пур (vaı	GIU	100	пуз	SET	Суз	АЗР	105	1111	1112	1111	Суз	110	FIO	Суз
	Pro A	Ala	Pro		Leu	Arg	Gly	Gly		Lys	Val	Phe	Leu		Pro	Pro
			115			_	_	120		_			125			
10	Lys I	Pro	Lys	Asp	Thr	Leu	Met	Ile	Ser	Arg	Thr	Pro	Glu	Val	Thr	Cys
	1	130					135					140				
	Val V	Val	Val	Asp	Val		His	Glu	Asp	Pro		Val	Lys	Phe	Asn	Trp
	145					150			_		155	_,		_	_	160
15	Tyr V	Val	Asp	GLY	Val 165	Glu	Val	Hıs	Asn	Ala 170	Lys	Thr	Lys	Pro	Arg 175	GLu
15	Glu (31n	Тτιν	Δla		Thr	Ψτιν	Δrα	Val		Ser	Val	T.Q11	Thr		T.011
	OIU (JIII	- y -	180	DCI	1111	- y -	711.9	185	vai	DCI	vai	пси	190	vai	ПСи
	His (Gln	Asp		Leu	Asn	Gly	Lys		Tyr	Lys	Cys	Lys		Ser	Asn
			195	_			_	200		_	_	_	205			
20	Lys A	Ala	Leu	Pro	Ala	Pro	Ile	Glu	Lys	Thr	Ile	Ser	Lys	Ala	Lys	Gly
	4	210					215					220				
	Gln I	Pro	Arg	Glu	Pro		Val	Tyr	Thr	Leu		Pro	Ser	Arg	Asp	
	225	1	_	_	~ 1	230	~	_		~	235		_	~ 3		240
25	Leu :	l'hr	Lys	Asn	GIn 245	Val	Ser	Leu	Thr	Cys 250	Leu	Val	Lys	GLY	255	Tyr
25	Pro S	Ser	Asn	Tle	_	Val	G] 11	Trn	G] 11		Δsn	Glv	Gln	Pro		Asn
	110 1	JC1	1100	260	7114	Val	Olu	TIP	265	DCI	71011	ОТУ	OIII	270	Olu	11011
	Asn :	Tyr	Lys	Thr	Thr	Pro	Pro	Tyr		Asp	Ser	Asp	Gly	Ser	Phe	Phe
			275					280					285			
30	Leu 7	Tyr	Ser	Lys	Leu	Thr	Val	Asp	Lys	Ser	Arg	Trp	Gln	Gln	Gly	Asn
	2	290					295					300				
	Val I	Phe	Ser	Cys	Ser		Met	His	Glu	Ala		His	Asn	His	Tyr	
	305	~1	C	T	C	310	0	D			315					320
35	Gln (J⊥U	ser	Lеи	325	ьеи	ser	Pro								
33	<210	> 1	18		323											
	<2112		.07													
	<212	> F	PRT													
	<2132	> 1/	Іскус	ССТВ	енная	I										
40	<220	>														
	<223			CCTB	онно	СИНТ	гезир	ован	ная	посл	гедог	ватеј	тьнос	СТЬ		
	<400		.18	7.7.	70 7 -	D	0	T7 - 7	Dl	- 1-	D1	D	D	0	7	G1
	Arg :	l'nr	val	Ala	AIA 5	Pro	ser	val	Pne	11e	Pne	Pro	Pro	ser	Asp 15	GLu
	1				J					T O					\perp \supset	
45	1 Gln I	Len	Lvs	Ser	Gl v	Thr	Ala	Ser	Val	Val	Cvs	Len	Len	Asn	Asn	Phe
45	1 Gln I	Leu	Lys	Ser 20	Gly	Thr	Ala	Ser	Val 25	Val	Cys	Leu	Leu	Asn 30	Asn	Phe
45				20					25					30		

	Ser (Gly 50	Asn	Ser	Gln	Glu	Ser 55	Val	Thr	Glu	Gln	Asp	Ser	Lys	Asp	Ser
	Thr T	Гуr	Ser	Leu	Ser	Ser 70	Thr	Leu	Thr	Leu	Ser 75	Lys	Ala	Asp	Tyr	Glu 80
5	Lys H	His	Lys	Val	Tyr 85	Ala	Cys	Glu	Val	Thr 90	His	Gln	Gly	Leu	Ser 95	Ser
	Pro V	/al	Thr	Lys	Ser	Phe	Asn	Arg	Gly 105	Glu	Cys					
	<210>	> 1	19													
10	<211>	> 3	328													
	<212>	> P	PRT													
	<213>	> 1/2	Іскус	стве	енная	Ŧ										
	<220>	>														
	<223>	> 1/	скус	стве	онно	СИНТ	гезир	ован	ная	посл	гедов	вател	тьнос	СТЬ		
15	<400>	> 1	19													
	Ala S	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe	Pro	Leu	Ala	Pro	Ser	Ser	Lys
	1				5					10					15	
	Ser T	ľhr	Ser	_	Gly	Thr	Ala	Ala		Gly	Cys	Leu	Val	_	Asp	Tyr
				20	_		_		25				_	30		
20	Phe I	Pro		Pro	Val	Thr	Val		Trp	Asn	Ser	Gly		Leu	Thr	Ser
	C1 T	7 - 7	35	m1	D1	D	70 T -	40	T	Q1	0	0	45	T	m	0
	Gly V	7ат 50	HIS	Thr	Pne	Pro	55	vaı	Leu	GIN	ser	Ser 60	GTÀ	Leu	Tyr	ser
	Leu S		Ser	Val	Val	Thr		Pro	Sar	Sar	Sar		G1 57	Thr	Gln	Thr
25	65	JCI	DCI	vai	vai	70	vai	110	DCI	DCI	75	пси	ОТУ	1111	OIII	80
25	Tyr I	Ile	Cvs	Asn	Val		His	Lvs	Pro	Ser		Thr	Lvs	Val	Asp	
	4		_		85			2		90			-		95	1
	Lys V	/al	Glu	Pro	Lys	Ser	Cys	Asp	Lys	Thr	His	Thr	Cys	Pro	Pro	Cys
				100					105					110		
30	Pro A	Ala	Pro	Glu	Leu	Arg	Gly	Gly	Pro	Lys	Val	Phe	Leu	Phe	Pro	Pro
			115					120					125			
	Lys E	Pro	Lys	Asp	Thr	Leu	Met	Ile	Ser	Arg	Thr	Pro	Glu	Val	Thr	Cys
	1	130					135					140				
	Val V	/al	Val	Asp	Val		His	Glu	Asp	Pro		Val	Lys	Phe	Asn	
35	145	- 1	-	G 1		150			•	7 . 7	155	m1	_	-	-	160
	Tyr V	/al	Asp	GTĀ	165	GIU	vaı	HIS	Asn	170	ьуs	Thr	ьуs	Pro		GIU
	Glu G	~ln	Пттх	7.1.		Прх	Птт	λκα	77-1		Sor	7727	T 011	Прх	175	T 011
	GIU C	3111	тут	180	Del	TIIL	тут	AIG	185	vai	Det	vai	пец	190	vai	пец
40	His G	71n	Asp		Len	Asn	Glv	Lvs		Tvr	Lvs	Cvs	Lvs		Ser	Asn
			195	1			1	200		-1-	-1-	- 1 -	205			
	Lys A	Ala	Leu	Pro	Ala	Pro	Ile	Glu	Lys	Thr	Ile	Ser	Lys	Ala	Lys	Gly
	2	210					215					220				
	Gln E	Pro	Arg	Glu	Pro	Gln	Val	Tyr	Thr	Leu	Pro	Pro	Ser	Arg	Lys	Glu
45	225					230					235					240
	Leu 1	Thr	Lys	Asn	Gln	Val	Ser	Leu	Thr	Cys	Leu	Val	Lys	Gly	Phe	Tyr
					245					250					255	
	Pro S	Ser	Asp	Ile	Ala	Val	Glu	Trp	Glu	Ser	Asn	Gly	Gln	Pro	Glu	Asn

		260	265		270
	Asn Tyr Lys 275	Thr Thr Pro	Pro Tyr Leu 280	Asp Ser Asp	Gly Ser Phe Phe 285
5	Leu Tyr Ser	Lys Leu Thr	Val Asp Lys 295	Ser Arg Trp 300	Gln Gln Gly Asn
	Val Phe Ser	Cys Ser Val 310		Ala Leu His 315	Asn Arg Tyr Thr 320
	Gln Lys Ser	Leu Ser Leu 325	Ser Pro		
10	<210> 120				
	<211> 116				
	<212> PRT				
	<220>	ственная			
15	<223> искус <400> 120	СТВЕННО СИН	тезированная	последовател	ІЬНОСТЬ
		Val Val Glu	Ser Asp Gly	Gly Leu Val	Gln Pro Gly Arg
	1	5		10	15
	Ser Leu Lys	Leu Pro Cys	Ala Ala Ser	Gly Phe Thr	Phe Ser Asp Tyr
20		20	25		30
	Tyr Met Ala 35	Trp Val Arg	Gln Ala Pro 40	Thr Lys Gly	Leu Glu Trp Val 45
	Ala Ser Ile 50	Ser Tyr Asp	Gly Ser Ser 55	Thr Tyr Tyr 60	Arg Asp Ser Val
25	Lys Gly Arg 65	Phe Thr Ile	Ser Arg Asp	Asn Ala Lys 75	Ser Thr Leu Tyr 80
	Leu Gln Met .	Asp Ser Leu 85	Arg Ser Glu	Asp Thr Ala	Thr Tyr Tyr Cys 95
	Gly Arg His	Ser Ser Tyr	Phe Asp Tyr	Trp Gly Gln	Gly Val Met Val
30		100	105		110
	Thr Val Ser	Ser			
	115 <210> 121				
	<210> 121 <211> 106				
35	<212> PRT				
		ственная			
	<220>				
	<223> искус	ственно син	тезированная	последовател	ІЬНОСТЬ
	<400> 121	, _,			
40	Asp lle Glu .	Leu Thr GIn 5	Ser Pro Ala	Leu Ala Val	Ser Pro Gly Glu 15
		-	Arg Ala Ser		Ser Thr Leu Met
	-	20	25		30
	His Trp Tyr	Gln Gln Lys	Pro Gly Gln	Gln Pro Lys	Leu Leu Ile Tyr
45	35		40		45
	Leu Ala Ser 1	His Leu Glu	Ser Gly Val	Pro Ala Arg 60	Phe Ser Gly Ser
	Gly Ser Gly	Thr Asp Phe	Thr Leu Thr	Ile Asp Pro	Val Glu Ala Asp

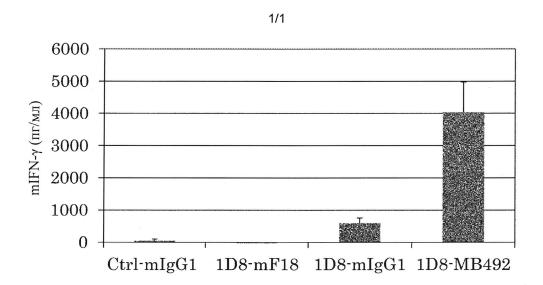
	65				70					75					80
	Asp Th	r Ala	Thr	Tyr 85	Tyr	Cys	Gln	Gln	Ser 90	Trp	Asn	Asp	Pro	Trp 95	Thr
5	Phe Gl	y Gly	Gly 100	Thr	Lys	Leu	Glu	Leu 105	Lys						
	<210> <211> <212>	122 121 PRT													
	<213>	Иску	CCTB	енная	оп н	следо	овате	ЭЛЬНО	ОСТЬ						
10	<220>														
	<223>	иску	CCTB	онне	СИН	гезир	рован	ная	посл	педоі	вател	тьнос	СТЬ		
	<400>	122	_			_				_	_		_	_	
	Gln Va	l Gln	Leu		GIn	Trp	GLy	Ala		Leu	Leu	Lys	Pro		Glu
15	1 Thr Le	11 Sar	T. (21)	5 Thr	Cve	Nlο	∏⊃1	Ψττν	10	Clv	Sar	Dha	Sar	15 G177	Ψττν
15	1111 110	u bei	20	1111	СУБ	πτα	vai	25	ОТУ	ОТУ	DCI	TIIC	30	ОТУ	- y -
	Tyr Tr	p Ser		Ile	Arg	Gln	Ser		Glu	Lys	Gly	Leu		Trp	Ile
		35					40					45			
	Gly Gl	u Ile	Asn	His	Gly	Gly	Tyr	Val	Thr	Tyr	Asn	Pro	Ser	Leu	Glu
20	50					55					60				
	Ser Ar	g Val	Thr	Ile		Val	Asp	Thr	Ser		Asn	Gln	Phe	Ser	
	65		C 0 20	7707	70 mh.s	7.1.	71.	7.00	mb so	75	77-1	П	П	Crra	80
	Lys Le	u ser	ser	85	THE	Ala	Ala	Asp	90	Ala	Val	TÀT	TÀT	95	Ala
25	Arg As	p Tyr		Pro	Gly	Asn	Tyr		Trp	Tyr	Phe	Asp		Trp	Gly
	Ara Cl	,, ⊞h∞	100	77-1	mbγ	77-1	502	105					110		
	Arg Gl	115	ьеи	val	TIII	val	120	ser							
	<210>	123					120								
30	<211>	109													
	<212>	PRT													
	<213>	Иску	CCTB	енная	оп н	следо	овате	ЭЛЬНО	ОСТЬ						
	<220>														
25	<223>	иску	CCTB	онне	СИН	гезир	рован	ная	посл	педоі	вател	1ЬНО(СТЬ		
35	<400> Glu Il	123 e Val	T.e11	Thr	Gln	Ser	Pro	Δla	Thr	T.e11	Ser	T.e11	Ser	Pro	Glv
	1	c vai	шеа	5	0111	DCI	110	7114	10	шец	DCI	шси	DCI	15	Ο±y
	- Glu Ar	g Ala	Thr	-	Ser	Cys	Arg	Ala		Gln	Ser	Val	Ser	_	Tyr
			20					25					30		
40	Leu Al	a Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Gln	Ala	Pro	Arg	Leu	Leu	Ile
		35					40					45			
	Tyr As		Ser	Asn	Arg	Ala 55	Thr	Gly	Ile	Pro	Ala 60	Arg	Phe	Ser	Gly
	Ser Gl	y Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser	Ser	Leu	Glu	Pro
45	65				70	_				75		_	_	_	80
	Glu As	p Phe	Ala		Tyr	Tyr	Cys	Gln		Arg	Ser	Asn	Trp		Pro
	Ala Le	ու ሞԽո	Pho	85 Gl 77	C1 17	C1 17	Thγ	T.170	90 Val	Clii	Tlo	T.170		95	
	лта пе	u IIIĹ	T-116	ату	ату	ату	TIIT	пур	val	σ±u	TTE	пур			

				100					105							
	<210)>	124													
	<21	1>	120													
	<212	2>	PRT													
5	<213	3> 1	Иску	ССТВ	енна	оп в	след	овате	эльно	ОСТЬ						
	<220)>														
	<223	3> :	иску	ССТВ	енно	СИН	гезиј	рован	ная	посл	педоі	вател	пьно	СТЬ		
	<400)>	124													
	Glu	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala
10	1				5					10					15	
	Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr	Ser	Tyr
	Tyr	Thr	His	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15	Gly	Ile 50	Ile	Asn	Pro	Ser	Gly 55	Gly	Ser	Thr	Ser	Tyr 60	Ala	Gln	Lys	Phe
			Arg	Val	Thr			Arg	Asp	Thr			Ser	Thr	Val	_
	65					70					75					80
20	Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
	Ala	Arg	Gly	Ala 100	Pro	Glu	Tyr	Ser	Ser 105	Ser	Ser	Asp	Tyr	Trp 110	Gly	Gln
	Gly	Thr	Met	Val	Thr	Val	Ser	Ser								
			115					120								
25	<210)>	125													
	<211	1>	117													
	<212	2>	PRT													
	<213	3> 1	Иску	ССТВ	енна	оп в	след	овате	эльно	ОСТЬ						
	<220)>														
30	<223	3> :	иску	ССТВ	енно	СИН	гезиј	рован	ная	посл	педоі	вател	пьно	СТЬ		
	<400)>	125													
	Glu	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala
	1				5					10					15	
	Ser	Val	Lys	Val	Ser	Cys	Lys	Ala	Ser	Gly	Tyr	Thr	Phe	Thr	Gly	Tyr
35				20					25					30		
	Tyr	Met	His	Trp	Val	Arg	Gln		Pro	Gly	Gln	Gly		Glu	Trp	Met
			35					40					45			
	Gly	Trp 50	Ile	Asn	Pro	Asn	Ser 55	Gly	Gly	Thr	Asn	Tyr 60	Ala	Gln	Lys	Phe
40	Gln	Gly	Arg	Val	Thr	Met	Thr	Arg	Asp	Thr	Ser	Ile	Ser	Thr	Ala	Tyr
	65					70					75					80
	Met	Glu	Leu	Ser	Arg 85	Leu	Arg	Ser	Asp	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
	Ala	Arg	Asp	Gly	Ile	Gly	Asn	His	Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Leu
45				100					105					110		
	Val	Thr	Val	Ser	Ser											
			115													

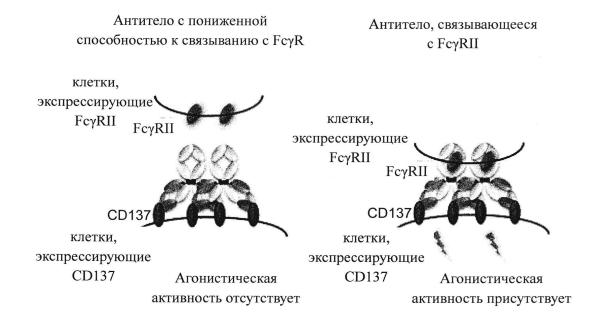
(57) Формула изобретения

- 1. Антитело для лечения рака, содержащее:
- (1) специфический для рака антигенсвязывающий Fab домен;
- (2) CD137-связывающий Fab домен и

5

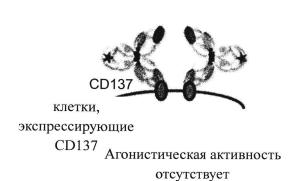

15

35


40

45

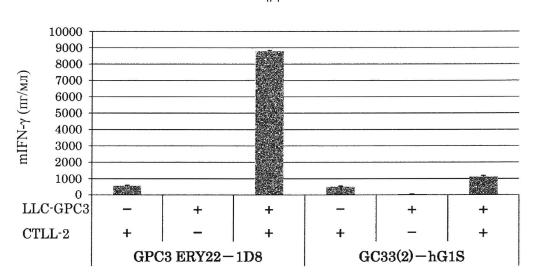
- (3) FcRn-связывающий домен, в котором FcRn-связывающий домен представляет собой Fc-область антитела с пониженной активностью связывания с Fcy-рецептором.
- 2. Фармацевтическая композиция для лечения рака, содержащая в качестве действующего вещества антитело по п. 1 и фармацевтически приемлемые носители и/ или добавки.
- 3. Фармацевтическая композиция по п. 2, которая представляет собой индуцирующую цитотоксичность композицию.
- 4. Фармацевтическая комбинация для лечения рака, содержащая первое антитело по п. 1 и второе антитело, которое содержит:
 - (1) домен, связывающийся со специфическим для рака антигеном;
 - (2) CD3-связывающий домен и
- (3) FcRn-связывающий домен, который представляет собой Fc-область антитела с пониженной активностью связывания с Fcγ-рецептором.
- 5. Фармацевтическая комбинация по п. 4, в которой первое антитело и второе антитело присутствуют в смеси.
- 6. Фармацевтическая комбинация по п. 4, в которой первое антитело и второе антитело предназначены для совместного применения.
- 7. Фармацевтическая комбинация по п. 4, в которой первое антитело и второе антитело предназначены для одновременного применения.
- 8. Фармацевтическая комбинация по п. 4, в которой первое антитело и второе антитело предназначены для раздельного применения.
 - 9. Фармацевтическая комбинация по любому из пп. 4-8, которая представляет собой индуцирующую цитотоксичность комбинацию.
- 10. Фармацевтическая композиция для лечения рака, содержащая в качестве действующего вещества антитело по п. 1 и антитело, которое содержит:
 - (1) домен, связывающийся со специфическим для рака антигеном;
 - (2) СD3-связывающий домен и
 - (3) FcRn-связывающий домен, который представляет собой Fc-область антитела с пониженной активностью связывания с Fcγ-рецептором, а также фармацевтически приемлемые носители.
 - 11. Фармацевтическая композиция по п. 10, которая представляет собой индуцирующую цитотоксичность композицию.
 - 12. Применение антитела по п. 1 и антитела, которое содержит:
 - (1) домен, связывающийся со специфическим для рака антигеном;
 - (2) СD3-связывающий домен и
 - (3) FcRn-связывающий домен, который представляет собой Fc-область антитела с пониженной активностью связывания с Fcγ-рецептором, в комбинированной терапии рака.
 - 13. Применение по п. 12, при котором антитела вводят совместно.
 - 14. Применение по п. 12, при котором антитела вводят одновременно.
 - 15. Применение по п. 12, при котором антитела вводят раздельно.


Фиг. 1

Фиг. 2

В отсутствии клеток, экспрессирующих раковый антиген

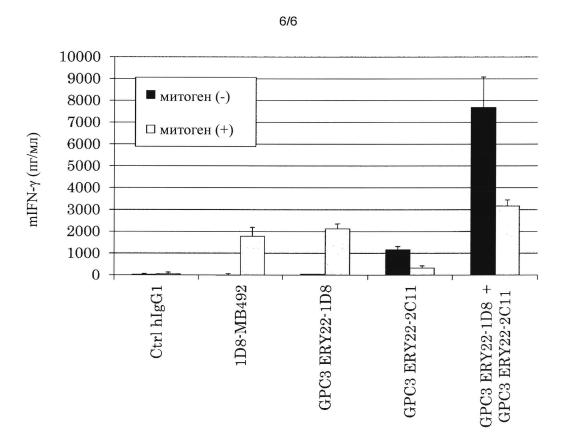
В присутствии клеток, экспрессирующих раковый антиген

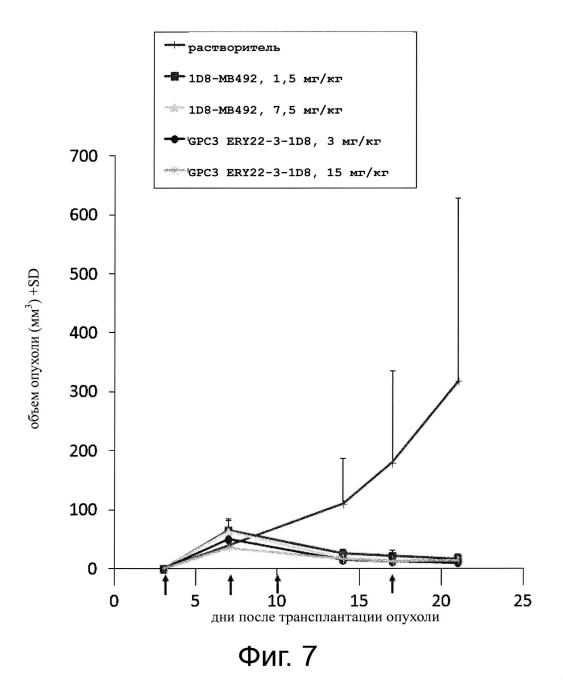


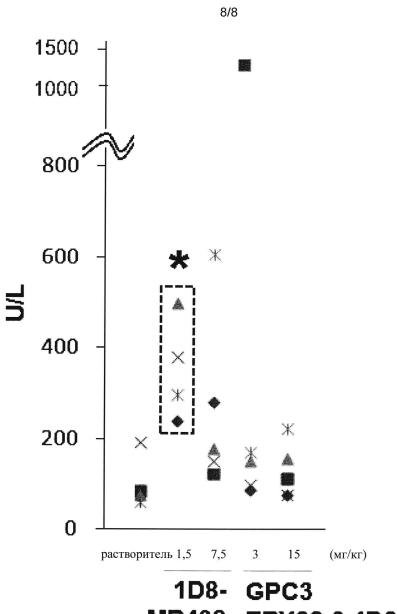
экспрессирующие hGPC3 hGPC3
CD137
Клетки, экспрессирующие Агонистическая активность CD137 присутствует


клетки,

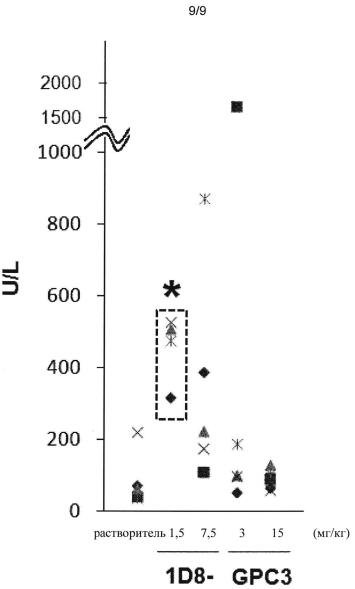
Фиг. 3



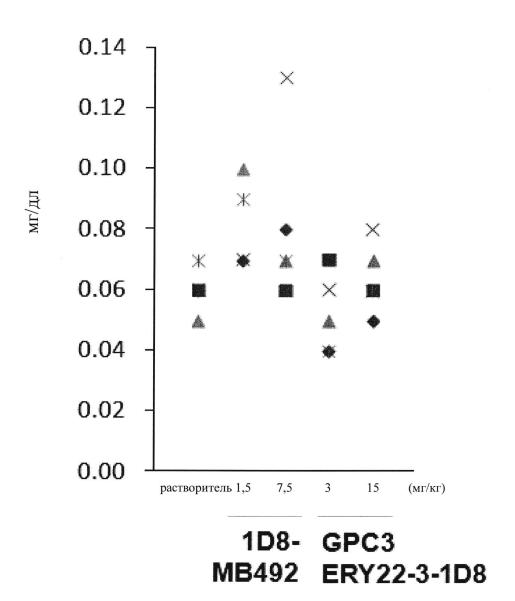

Фиг. 4

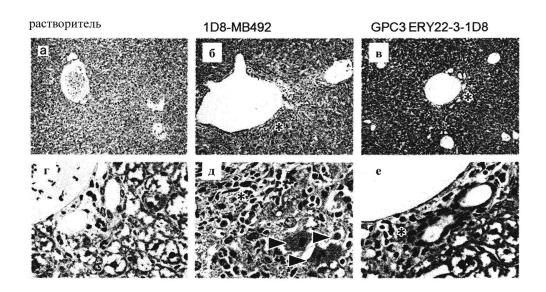


Фиг. 5

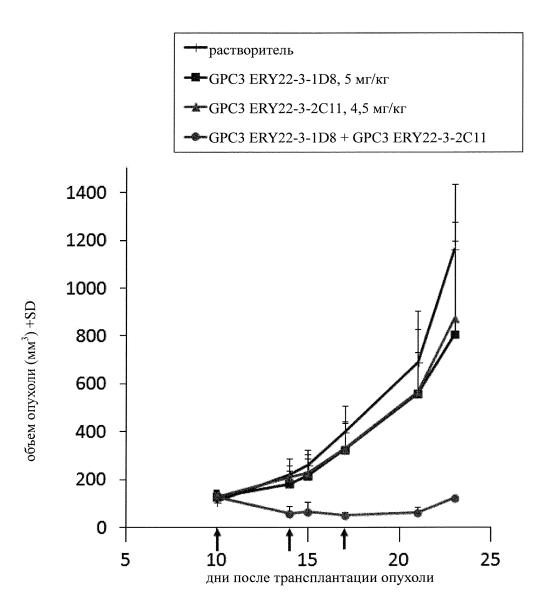

Фиг. 6

MB492 ERY22-3-1D8


***:** p< 0,05 (критерий Дуннета) Фиг. 8


1D8- GPC3 MB492 ERY22-3-1D8

*****: | p< 0,05 (критерий Дуннета)

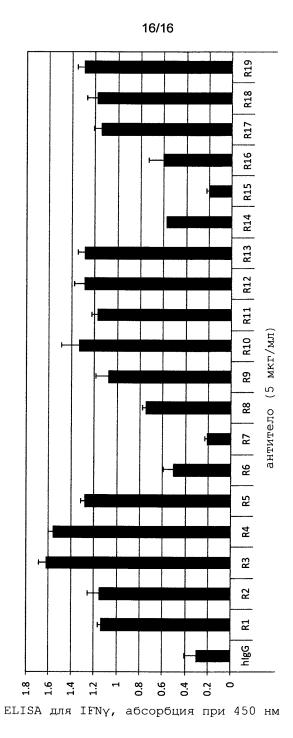

Фиг. 9

Фиг. 10

Фиг. 11

Фиг. 12

Кэбот ЕU-инпекс IgG1 IgG3 IgG3	1 2 2 2 2 2 2 3 3 3 3
IgG4	ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEFVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYG
КЭбот ЕU-индекс	c 28
1961 1962	-KTHTCPP
1963 1964	DTTHTCPRCPEPRSCDTPPFCPRCPEPRSCDTPPFCPRCPEPRSCDTPPPCPRCPAPELLGGPSVFLFPPRRPKDTLMISRTPEVTCVVVDVSHEDPEVQFKWYVDPPCPS
Кэбот	3
ЕU-индек	ЕU-инлекс8990112
IgG1 IgG2	GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDMLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNG GVEVHNAKTKPREEOFNSTPRVVSVITVVHODMINGKEVKKYSNKGLPAPIEKTISKTKGOPREPONVTIDPSREEMTKNOVSTTCLIKGEVDSTIANDERS
1963 1964	GVEVHNAKTKEREEQYNSTERVVSVLTVLHQDMLNGKEYKCKVSNKALPAPIEKTISKTKGQPREEQVYTLEPSREEMTKNQVSLTCLVKGFYPSDIAVEWESSG GVEVHNAKTKEREEQFNSTYRVVSVLTVLHQDMLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREEQVYTLEPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNG
Кэбот	3 4
ЕU-индекс	; 890123
1gG1	
IgG2 IgG3	QPENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK (SEQ 1D NO:6) OPENNYNTTPPMLDSDGSFFLYSKLTVDKSRWOOGNIFSCSVMHEALHNRFTOKSLSLSPGK (SFQ 1D NO:7)
IgG4	

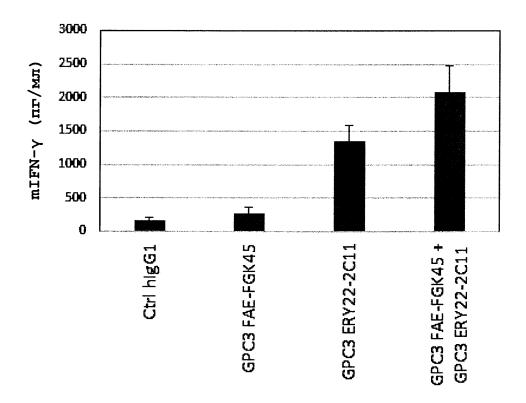

Фиг. 13

	Название образна	>	ровень	Уровень проявления окрашивания	ия окраі		в анализе	se ELISA	
		полноразм.	CRD1	CRD1-3	CRD1-2	CRD2-4	CRD2-3	CRD3-4	Non
контроль	M	2.123	0.093	0.067	0.085	0.863	0.081	2.258	0.055
контроль	В	2.674	1.75	2.326	2.584	0.097	0.089	0.074	0.049
R 1	BB_BBNM001H01-P253/BBNM001_L_01-lam	1.795	0.1235	0.473	0.865	0.0935	0.1165	0.0875	0.065
R2	BB_BBNM002H01-P253/BBNM002_L_01-lam	0.2055	0.226	0.2255	0.2015	0.1505	0.19	0.11	0.202
R3	BB_BBNM003H01-P253/BBNM003_L_01-lam	2.056	0.103	1.1225	1.737	0.0875	0.0995	0.077	0.061
R4	BB_BBNM004H01-P253/BBNM004_L_01-lam	1.8905	0.0635	0.7795	1.4945	0.065	0.0585	0.056	0.051
R5	BB_BBNM005H01-P253/BBNM005_L_01-lam	1.8775	0.2775	1.361	1.7045	0.25	0.274	0.161	0.216
R6	BB_BBSM001H01-P253/BBSM001_L_01-k0	2.157	0.42	2.3015	0.4015	2.3375	2.5565	2.7345	0.165
R7	BB_BBSM002H01-P253/BBSM002_L_01-k0	1.9165	0.61	2.2285	0.814	2.1895	2.516	2.63	0.4435
R8	BB_BBSM003H01-P253/BBSM003_L_01-k0	2.088	0.736	2.254	0.5805	2.232	2.422	2.517	1.114
R9	BB_BBSM004H01-P253/BBSM004_L_01-k0	1.9005	1.147	2.202	966.0	2.1185	2.6105	2.608	1.4935
R10	BB_BBSM005H01-P253/BBSM005_L_01-k0	2.5885	0.211	2.464	0.222	2.4555	2.636	2.7475	0.101
R11	BB_BBSM006H01-P253/BBSM006_L_01-k0	2.058	1.8175	2.4485	1.6925	2.297	2.73	2.8825	2.0265
R12	BB_BBSM007H01-P253/BBSM007_L_01-k0	2.1665	1.152	2.5955	1.127	2.3475	2.707	2.9035	1.956
R13	BB_BBSM004H02-P253/BBSM004_L_02-k0	0.4745	0.6005	0.7875	0.45	0.4545	0.555	0.2595	1.146
R14	BB_BBSM010H01-P253/BBSM010_L_01-k0	1.9685	1.6375	2.4225	1.701	2.205	2.719	2.7595	2.2055
R15	BB_BBSM011H01-P253/BBSM011_L_01-k0	1.254	1.3025	1.889	1.2485	1.521	2.299	1.4745	1.94
R16	BB_BBSM012H01-P253/BBSM012_L_01-k0	1.929	0.2865	2.2405	0.269	2.1695	2.543	2.6265	0.1705
R17	BB_BBSM014H01-P253/BBSM014_L_01-k0	1.3375	0.197	2:052	0.169	1.9245	2.4415	2.474	0.166
R18	BB_BBSM015H01-P253/BBSM015_L_01-k0	2.027	0.4	2.2945	0.4195	2.2725	2.4905	2.655	0.3465
R19	BB_BBSM010H02-P253/BBSM010_L_02-k0	2.1065	2.281	2.19	2.2045	1.898	2.0045	1.6175	2.401

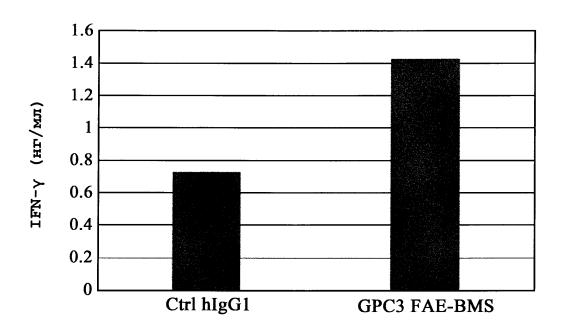
Фиг. 14-1

	Начвание обрания	Отношение	ние к	к уровню для варианта без	пя варие	нта без	сенсиби	сенсибилизации	
	310000000000000000000000000000000000000	полноразм.	CRD1	CRD1-3	CRD1-2	CRD2-4	CRD2-3	CRD3-4	Non
контроль	M	38.6	1.7	1.2	1.5	15.7	1.5	41.1	1.0
контроль	В	54.6	35.7	47.5	52.7	2.0	1.8	1.5	1.0
쮼	BB_BBNM001H01-P253/BBNM001_L_01-lam	27.6	1.9	7.3	13.3	1.4	1.8	1.3	1.0
껆	BB_BBNM002H01-P253/BBNM002_L_01-lam	1.0	1.1	1.1	1.0	0.7	6.0	0.5	1.0
22	BB_BBNM003H01-P253/BBNM003_L_01-lam	33.7	1.7	18.4	28.5	1.4	1.6	1.3	1.0
₹	BB_BBNM004H01-P253/BBNM004_L_01-lam	37.1	1.2	15.3	29.3	1.3	1.1	1.1	1.0
82	BB_BBNM005H01-P253/BBNM005_L_01-lam	8.7	1.3	6.3	7.9	1.2	1.3	0.7	1:0
82	BB_BBSM001H01-P253/BBSM001_L_01-k0	13.1	2.5	13.9	2.4	14.2	15.5	16.6	1.0
₩	BB_BBSM002H01-P253/BBSM002_L_01-k0	4.3	1.4	5.0	1.8	4.9	5.7	5.9	1.0
22	BB_BBSM003H01-P253/BBSM003_L_01-k0	1.9	2.0	2.0	0.5	2.0	2.2	2.3	1.0
22	BB_BBSM004H01-P253/BBSM004_L_01-k0	1.3	0.8	1.5	0.7	1.4	1.7	1.7	1.0
R10	BB_BBSM005H01-P253/BBSM005_L_01-k0	25.6	2.1	24.4	2.2	24.3	26.1	27.2	1.0
1	BB_BBSM006H01-P253/BBSM006_L_01-k0	1.0	6.0	1.2	9.0	1.1	1.3	1.4	1.0
R12	BB_BBSM007H01-P253/BBSM007_L_01-k0	1.1	9.0	1.3	9.0	1.2	1.4	1.5	1.0
R13	BB_BBSM004H02-P253/BBSM004_L_02-k0	0.4	0.5	0.7	0.4	0.4	0.5	0.2	1.0
R14	BB_BBSM010H01-P253/BBSM010_L_01-k0	0.0	0.7	1.1	8.0	1.0	1.2	1.3	1.0
R15	BB_BBSM011H01-P253/BBSM011_L_01-k0	9.0	0.7	1.0	9.0	8.0	1.2	9.0	1.0
R16	BB_BBSM012H01-P253/BBSM012_L_01-k0	11.3	1.7	13.1	1.6	12.7	14.9	15.4	1.0
R17	BB_BBSM014H01-P253/BBSM014_L_01-k0	8.1	1.2	12.4	1.0	11.6	14.7	14.9	1.0
R18	BB_BBSM015H01-P253/BBSM015_L_01-k0	5.8	1.2	9.9	1.2	9.9	7.2	7.7	1.0
R19	BB_BBSM010H02-P253/BBSM010_L_02-k0	0.9	1.0	0.0	6.0	0.8	0.8	0.7	1.0

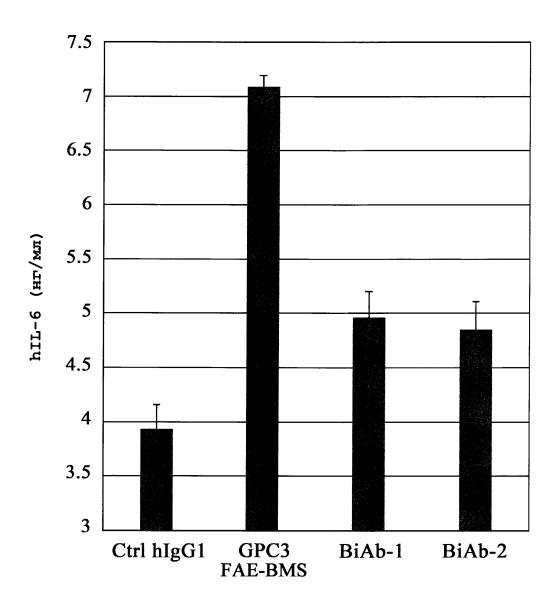
Фиг. 14-2



Фиг. 15


антитело	Т-клеточная активация	потипе
R1	+	CRD1-2
R2	+	N.D.
R3	+	CRD1-2
R4	+	CRD1-2
R5	+	CRD1-2
R6	+	CRD2-3
R7	_	CRD2-3
R8	+	N.D.
R9	+	N.D.
R10	+	CRD2-3
R11	+	N.D.
R12	+	N.D.
R13	+	N.D.
R14	+	N.D.
R15		N.D.
R16	+	CRD2-3
R17	+	CRD2-3
R18	+	CRD2-3
R19	+	N.D.

N.D. - не определяли


Фиг. 16

Фиг. 17

Фиг. 18

Фиг. 19